Investigation of the Tikhonov Regularization Method in Regional Gravity Field Modeling by Poisson Wavelets Radial Basis Functions

Yihao Wu , Bo Zhong , Zhicai Luo

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1349 -1358.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1349 -1358. DOI: 10.1007/s12583-017-0771-3
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs

Investigation of the Tikhonov Regularization Method in Regional Gravity Field Modeling by Poisson Wavelets Radial Basis Functions

Author information +
History +
PDF

Abstract

The application of Tikhonov regularization method for dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation (VCE) and minimum standard deviation (MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the first-order Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.

Keywords

regional gravity field modeling / Poisson wavelets radial basis functions / Tikhonov regularization method / L-curve / variance component estimation (VCE)

Cite this article

Download citation ▾
Yihao Wu, Bo Zhong, Zhicai Luo. Investigation of the Tikhonov Regularization Method in Regional Gravity Field Modeling by Poisson Wavelets Radial Basis Functions. Journal of Earth Science, 2018, 29(6): 1349-1358 DOI:10.1007/s12583-017-0771-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albertella A., Sansò F., Sneeuw N. Band-Limited Functions on a Bounded Spherical Domain: The Slepian Problem on the Sphere. Journal of Geodesy, 1999, 73(9): 436-447.

[2]

Andersen O. B. The DTU10 Gravity Field and Mean Sea Surface, 2010.

[3]

Chambodut A., Panet I., Mandea M., . Wavelet Frames: An Alternative to Spherical Harmonic Representation of Potential Fields. Geophysical Journal International, 2005, 163(3): 875-899.

[4]

Girard A. A Fast ‘Monte-Carlo Cross-Validation’ Procedure for Large Least Squares Problems with Noisy Data. Numerische Mathematik, 1989, 56(1): 1-23.

[5]

Guo D. M., Bao L. F., Xu H. Z. Tectonic Characteristics of the Tibetan Plateau Based on EIGEN-6C2 Gravity Field Model. Earth Science—Journal of China University of Geosciences, 2015, 40(10): 1643-1652.

[6]

Hansen P. C., Jensen T. K., Rodriguez G. An Adaptive Pruning Algorithm for the Discrete L-Curve Criterion. Journal of Computational and Applied Mathematics, 2007, 198(2): 483-492.

[7]

Hansen P. C., O’Leary D. P. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems. SIAM Journal on Scientific Computing, 1993, 14(6): 1487-1503.

[8]

Hashemi Farahani H., Ditmar P., Klees R., . The Static Gravity Field Model DGM-1S from GRACE and GOCE Data: Computation, Validation and an Analysis of GOCE Mission’s Added Value. Journal of Geodesy, 2013, 87(9): 843-867.

[9]

Heck B., Seitz K. A Comparison of the Tesseroid, Prism and Point-Mass Approaches for Mass Reductions in Gravity Field Modelling. Journal of Geodesy, 2006, 81(2): 121-136.

[10]

Heiskanen W. A., Moritz H. Physical Geodesy, 1967, San Francisco: WH Freeman and Co.

[11]

Hirt C. RTM Gravity Forward-Modeling Using Topography/Bathymetry Data to Improve High-Degree Global Geopotential Models in the Coastal Zone. Marine Geodesy, 2013, 36(2): 183-202.

[12]

Hoerl A., Kennard R. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 1970, 42(1): 80-86.

[13]

Holschneider M., Iglewska-Nowak I. Poisson Wavelets on the Sphere. Journal of Fourier Analysis and Applications, 2007, 13(4): 405-419.

[14]

Johnston P. R., Gulrajani R. M. Selecting the Corner in the L-Curve Approach to Tikhonov Regularization. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1293-1296.

[15]

Klees R., Tenzer R., Prutkin I., . A Data-Driven Approach to Local Gravity Field Modelling Using Spherical Radial Basis Functions. Journal of Geodesy, 2008, 82(8): 457-471.

[16]

Koch K. R. Bayesian Inference for Variance Components. Manuscr. Geod., 1987, 12: 309-313.

[17]

Koch K. R., Kusche J. Regularization of Geopotential Determination from Satellite Data by Variance Components. Journal of Geodesy, 2002, 76(5): 259-268.

[18]

Kusche J., Klees R. Regularization of Gravity Field Estimation from Satellite Gravity Gradients. Journal of Geodesy, 2002, 76(6/7): 359-368.

[19]

Luthcke S. B., Sabaka T. J., Loomis B. D., . Antarctica, Greenland and Gulf of Alaska Land-Ice Evolution from an Iterated GRACE Global Mascon Solution. Journal of Glaciology, 2013, 59(216): 613-631.

[20]

Rummel R., Schwarz K. P., Gerstl M. Least Squares Collocation and Regularization. Bulletin Géodésique, 1979, 53(4): 343-361.

[21]

Simons F. J., Dahlen F. A. Spherical Slepian Functions and the Polar Gap in Geodesy. Geophysical Journal International, 2006, 166(3): 1039-1061.

[22]

Tenzer R., Klees R. The Choice of the Spherical Radial Basis Functions in Local Gravity Field Modeling. Studia Geophysica et Geodaetica, 2008, 52(3): 287-304.

[23]

Tikhonov A. N. Regularization of Incorrectly Posed Problems. Sov. Math. Dokl., 1963, 4(1): 1624-1627.

[24]

Wittwer T. Regional Gravity Field Modelling with Radial Basis Functions, 2010, Delft: Delft University of Technology

[25]

Wu Y. H., Luo Z. C. The Approach of Regional Geoid Refinement Based on Combining Multi-Satellite Altimetry Observations and Heterogeneous Gravity Data Sets. Chinese J. Geophys., 2016, 59(5): 1596-1607.

[26]

Wu Y. H., Luo Z. C., Chen W., . High-Resolution Regional Gravity Field Recovery from Poisson Wavelets Using Heterogeneous Observational Techniques. Earth, Planets and Space, 2017, 69(34): 1-15.

[27]

Wu Y. H., Luo Z. C., Zhou B. Y. Regional Gravity Modelling Based on Heterogeneous Data Sets by Using Poisson Wavelets Radial Basis Functions. Chinese J. Geophys., 2016, 59(3): 852-864.

[28]

Xu P. L. The Value of Minimum Norm Estimation of Geopotential Fields. Geophysical Journal International, 1992, 111(1): 170-178.

[29]

Xu P. L. Truncated SVD Methods for Discrete Linear Ill-Posed Problems. Geophysical Journal International, 1998, 135(2): 505-514.

[30]

Xu P. L. Iterative Generalized Cross-Validation for Fusing Heteroscedastic Data of Inverse Ill-Posed Problems. Geophysical Journal International, 2009, 179(1): 182-200.

[31]

Xu P. L., Rummel R. Generalized Ridge Regression with Applications in Determination of Potential Fields. Manuscr. Geod., 1994, 20: 8-20.

[32]

Xu P. L., Shen Y. Z., Fukuda Y., . Variance Component Estimation in Linear Inverse Ill-Posed Models. Journal of Geodesy, 2006, 80(2): 69-81.

[33]

Xu S. F., Chen C., Du J. S., . Characteristics and Tectonic Implications of Lithospheric Density Structures beneath Western Junggar and Its Surroundings. Earth Science—Journal of China University of Geosciences, 2015, 40(9): 1556-1565.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/