Analysis of atmospheric turbidity in clear skies at Wuhan, Central China

Lunche Wang , Yisen Chen , Ying Niu , Germán Ariel Salazar , Wei Gong

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 729 -738.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 729 -738. DOI: 10.1007/s12583-017-0756-2
Hydrogeology and Environmental Geology

Analysis of atmospheric turbidity in clear skies at Wuhan, Central China

Author information +
History +
PDF

Abstract

The Ångström turbidity coefficient (β) and Linke turbidity factor (T L) are used to study the atmospheric conditions in Wuhan, Central China, using measured direct solar radiation during 2010–2011 in this study. The results show that annual mean β values generally increase from 0.28 in the morning to 0.35 at noon, and then decrease to 0.1 in the late afternoon during the day; annual mean TL generally varies from 3 to 7 in Central China. Both turbidity coefficients have maximum values in spring and summer, while minimum values are observed in winter months. It also reveals that β values show preponderance (52.8%) between 0.15 and 0.35, 78.1% of TL values are between 3.3 and 7.7, which can be compared with other sites around the world. Relationship between turbidity coefficients and main meteorological parameters (humidity, temperature and wind direction) have been further investigated, it is discovered that the local aerosol concentrations, dust events in northern China and Southwest Monsoon from the Indian Ocean influences the β values in the study area.

Keywords

direct solar radiation / Ångström turbidity coefficient / Linke turbidity factor / Central China

Cite this article

Download citation ▾
Lunche Wang, Yisen Chen, Ying Niu, Germán Ariel Salazar, Wei Gong. Analysis of atmospheric turbidity in clear skies at Wuhan, Central China. Journal of Earth Science, 2017, 28(4): 729-738 DOI:10.1007/s12583-017-0756-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamopoulos A. D., Kambezidis H. D., Kaskaoutis D. G., . A Study of Aerosol Particle Sizes in the Atmosphere of Athens, Greece, Retrieved from Solar Spectral Measurements. Atmospheric Research, 2007, 86(3/4): 194-206.

[2]

Ångström A. Techniques of Determinig the Turbidity of the Atmosphere. Tellus, 1961, 13(2): 214-223.

[3]

Ångström A. The Parameters of Atmospheric Turbidity. Tellus, 1964, 16(1): 64-75.

[4]

Bilbao J., Román R., Miguel A. Turbidity Coefficients from Normal Direct Solar Irradiance in Central Spain. Atmospheric Research, 2014, 143: 73-84.

[5]

Bird R. E., Hulstrom R. L. A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces, 1981

[6]

Braslau N., Dave J. V. Effect of Aerosols on the Transfer of Solar Energy through Realistic Model Atmospheres. Part I: Non-Absorbing Aerosols. Journal of Applied Meteorology, 1973, 12(4): 601-615.

[7]

Chaâbane M. Analysis of the Atmospheric Turbidity Levels at Two Tunisian Sites. Atmospheric Research, 2008, 87(2): 136-146.

[8]

Che H., Zhang X. Y., Xia X., . Ground-Based Aerosol Climatology of China: Aerosol Optical Depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmospheric Chemistry and Physics, 2015, 15(13): 7619-7652.

[9]

Djafer D., Irbah A. Estimation of Atmospheric Turbidity over Ghardaïa City. Atmospheric Research, 2013, 128: 76-84.

[10]

Dogniaux R. Representation Analytique des Composantes du Rayonnement Solaire. Institut Royal de Métèorologie de Belgique, 1974.

[11]

Ellouz F., Masmoudi M., Medhioub K. Study of the Atmospheric Turbidity over Northern Tunisia. Renewable Energy, 2013, 51: 513-517.

[12]

El-Metwally M. Indirect Determination of Broadband Turbidity Coefficients over Egypt. Meteorology and Atmospheric Physics, 2013, 119(1/2): 71-90.

[13]

Feng Q., Wu S. J., Du Y., . Variations of PM10 Concentrations in Wuhan, China. Environmental Monitoring and Assessment, 2010, 176(1/2/3/4): 259-271.

[14]

Gong W., Zhang M., Han G., . An Investigation of Aerosol Scattering and Absorption Properties in Wuhan, Central China. Atmosphere, 2015, 6(4): 503-520.

[15]

Grenier J. C., De La Casinière A., Cabot T. Atmospheric Turbidity Analyzed by Means of Standardized Linke’s Turbidity Factor. Journal of Applied Meteorology, 1995, 34(6): 1449-1458.

[16]

Gueymard C. A. Importance of Atmospheric Turbidity and Associated Uncertainties in Solar Radiation and Luminous Efficacy Modelling. Energy, 2005, 30(9): 1603-1621.

[17]

Gueymard C. A., Garrison J. D. Critical Evaluation of Precipitable Water and Atmospheric Turbidity in Canada Using Measured Hourly Solar Irradiance. Solar Energy, 1998, 62(4): 291-307.

[18]

Hu B., Wang Y. S., Liu G. R. Spatiotemporal Characteristics of Photosynthetically Active Radiation in China. Journal of Geophysical Research, 2007, 112 D14 D14106

[19]

Hussain M., Khatun S., Rasul M. G. Determination of Atmospheric Turbidity in Bangladesh. Renewable Energy, 2000, 20(3): 325-332.

[20]

Iqbal M. An Introduction to Solar Radiation, 1983, New York: Academic Press

[21]

Jacovides C. P., Kaltsounides N. A., Asimakopoulos D. N., . Spectral Aerosol Optical Depth and Angstrom Parameters in the Polluted Athens Atmosphere. Theoretical and Applied Climatology, 2005, 81(3/4): 161-167.

[22]

Janjai S., Kumharn W., Laksanaboonsong J. Determination of Angstrom’s Turbidity Coefficient over Thailand. Renewable Energy, 2003, 28(11): 1685-1700.

[23]

Kaskaoutis D. G., Kambezidis H. D. Comparison of the Ångström Parameters Retrieval in Different Spectral Ranges with the Use of Different Techniques. Meteorology and Atmospheric Physics, 2007, 99(3/4): 233-246.

[24]

Kasten F. A Simple Parameterization of the Pyrheliometric Formula for Determining the Linke Turbidity Factor. Meteor. Rundschau, 1980, 33: 124-127.

[25]

Kasten F. The Linke Turbidity Factor Based on Improved Values of the Integral Rayleigh Optical Thickness. Solar Energy, 1996, 56(3): 239-244.

[26]

Leckner B. The Spectral Distribution of Solar Radiation at the Earth’s Surface—Elements of a Model. Solar Energy, 1978, 20(2): 143-150.

[27]

Li D. H. W., Lam J. C. A Study of Atmospheric Turbidity for Hong Kong. Renewable Energy, 2002, 25(1): 1-13.

[28]

Li K. M., Li Z. Q., Wang C. Y., . Shrinkage of Mt. Bogda Glaciers of Eastern Tian Shan in Central Asia during 1962–2006. Journal of Earth Science, 2016, 27(1): 139-150.

[29]

Lin A. W., Zou L., Wang L., . Estimation of Atmospheric Turbidity Coefficient over Zhengzhou during 1961–2013. Renewable Energy, 2016, 86: 1134-1144.

[30]

Linke F. Transmissions Koeffizient und Trubungsfaktor. Beitraége Zur Physik der Atmosphaére, 1922, 10: 91-103.

[31]

Long C. N., Ackerman T. P. Identification of Clear Skies from Broadband Pyranometer Measurements and Calculation of Downwelling Shortwave Cloud Effects. Journal of Geophysical Research: Atmospheres, 2000, 105(D12): 15609-15626.

[32]

López G., Batlles F. J. Estimate of the Atmospheric Turbidity from Three Broad-Band Solar Radiation Algorithms: A Comparative Study. Annales Geophysicae, 2004, 22(8): 2657-2668.

[33]

Louche A., Maurel M., Simonnot G., . Determination of Ångström’s Turbidity Coefficient from Direct Total Solar Irradiance Measurements. Solar Energy, 1987, 38(2): 89-96.

[34]

Malik A. Q. A Modified Method of Estimating Ångström’s Turbidity Coefficient for Solar Radiation Models. Renewable Energy, 2000, 21(3/4): 537-552.

[35]

Mavromatakis F., Franghiadakis Y. Direct and Indirect Determination of the Linke Turbidity Coefficient. Solar Energy, 2007, 81(7): 896-903.

[36]

Pan Z. T., Zhang Y. J., Liu X. D., . Current and Future Precipitation Extremes over Mississippi and Yangtze River Basins as Simulated in CMIP5 Models. Journal of Earth Science, 2016, 27(1): 22-36.

[37]

Pedrós R., Utrillas M. P., Martínez-Lozano J. A., . Values of Broad Band Turbidity Coefficients in a Mediterranean Coastal Site. Solar Energy, 1999, 66(1): 11-20.

[38]

Power H. C. Estimating Atmospheric Turbidity from Climate Data. Atmospheric Environment, 2001, 35(1): 125-134.

[39]

Salazar G. A. Estimation of Monthly Values of Atmospheric Turbidity Using Measured Values of Global Irradiation and Estimated Values from CSR and Yang Hybrid Models. Study Case: Argentina. Atmospheric Environment, 2011, 45(15): 2465-2472.

[40]

Salazar G., Utrillas P., Esteve A., . Estimation of Daily Average Values of the Ångström Turbidity Coefficient β Using a Corrected Yang Hybrid Model. Renewable Energy, 2013, 51: 182-188.

[41]

Sapkota B., Dhaubhadel R. Atmospheric Turbidity over Kathmandu Valley. Atmospheric Environment, 2002, 36(8): 1249-1257.

[42]

Trabelsi A., Masmoudi M. An Investigation of Atmospheric Turbidity over Kerkennah Island in Tunisia. Atmospheric Research, 2011, 101(1/2): 22-30.

[43]

Trenberth K. E., Fasullo J. T., Kiehl J. Earth’s Global Energy Budget. Bulletin of the American Meteorological Society, 2009, 90(3): 311-323.

[44]

Wang L. C., Gong W., Li C., . Measurement and Estimation of Photosynthetically Active Radiation from 1961 to 2011 in Central China. Applied Energy, 2013, 111: 1010-1017.

[45]

Wang L. C., Gong W., Ma Y. Y., . Photosynthetically Active Radiation and Its Relationship with Global Solar Radiation in Central China. International Journal of Biometeorology, 2014, 58(6): 1265-1277.

[46]

Wang L. C., Gong W., Li J., . Empirical Studies of Cloud Effects on Ultraviolet Radiation in Central China. International Journal of Climatology, 2014, 34(7): 2218-2228.

[47]

Wang L. C., Gong W., Xia X. G., . Long-Term Observations of Aerosol Optical Properties at Wuhan, an Urban Site in Central China. Atmospheric Environment, 2015, 101: 94-102.

[48]

Wang L. C., Gong W., Ramesh P., . Aerosol Optical Properties over Mount Song, a Rural Site in Central China. Aerosol and Air Quality Research, 2015, 15: 2051-2064.

[49]

Wang L. C., Salazar G. A., Gong W., . An Improved Method for Estimating the Ångström Turbidity Coefficient β in Central China during 1961–2010. Energy, 2015, 81: 67-73.

[50]

Wang L. C., Kisi O., Zounemat-Kermani M., . Solar Radiation Prediction Using Different Techniques: Model Evaluation and Comparison. Renewable and Sustainable Energy Reviews, 2016, 61: 384-397.

[51]

Wang Y. Q., Zhang X. Y., Sun J. Y., . Spatial and Temporal Variations of the Concentrations of PM10, PM2.5 and PM1 in China. Atmospheric Chemistry and Physics Discussions, 2015, 15(11): 15319-15354.

[52]

Wen C. C., Yeh H. H. Analysis of Atmospheric Turbidity Levels at Taichung Harbor near the Taiwan Strait. Atmospheric Research, 2009, 94(2): 168-177.

[53]

Wild M., Gilgen H., Roesch A., . From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science, 2005, 308(5723): 847-850.

[54]

Xia X. A., Chen H. B., Wang P. C., . Variation of Column-Integrated Aerosol Properties in a Chinese Urban Region. Journal of Geophysical Research, 2006, 111 D5 D05204

[55]

Xia X. G., Li Z. Q., Holben B., . Aerosol Optical Properties and Radiative Effects in the Yangtze Delta Region of China. Journal of Geophysical Research, 2007, 112 D22 D22S12.

[56]

Yu X. N., Zhu B., Zhang M. G. Seasonal Variability of Aerosol Optical Properties over Beijing. Atmospheric Environment, 2009, 43(26): 4095-4101.

[57]

Zakey A., Abdelwahab M., Makar P. A. Atmospheric Turbidity over Egypt. Atmospheric Environment, 2004, 38(11): 1579-1591.

[58]

Zhuang B. L., Wang T. J., Li S., . Optical Properties and Radiative Forcing of Urban Aerosols in Nanjing, China. Atmospheric Environment, 2014, 83: 43-52.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/