Analysis of atmospheric turbidity in clear skies at Wuhan, Central China
Lunche Wang, Yisen Chen, Ying Niu, Germán Ariel Salazar, Wei Gong
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 729-738.
Analysis of atmospheric turbidity in clear skies at Wuhan, Central China
The Ångström turbidity coefficient (β) and Linke turbidity factor (T L) are used to study the atmospheric conditions in Wuhan, Central China, using measured direct solar radiation during 2010–2011 in this study. The results show that annual mean β values generally increase from 0.28 in the morning to 0.35 at noon, and then decrease to 0.1 in the late afternoon during the day; annual mean TL generally varies from 3 to 7 in Central China. Both turbidity coefficients have maximum values in spring and summer, while minimum values are observed in winter months. It also reveals that β values show preponderance (52.8%) between 0.15 and 0.35, 78.1% of TL values are between 3.3 and 7.7, which can be compared with other sites around the world. Relationship between turbidity coefficients and main meteorological parameters (humidity, temperature and wind direction) have been further investigated, it is discovered that the local aerosol concentrations, dust events in northern China and Southwest Monsoon from the Indian Ocean influences the β values in the study area.
direct solar radiation / Ångström turbidity coefficient / Linke turbidity factor / Central China
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/
〈 |
|
〉 |