Analysis of atmospheric turbidity in clear skies at Wuhan, Central China

Lunche Wang, Yisen Chen, Ying Niu, Germán Ariel Salazar, Wei Gong

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 729-738.

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 729-738. DOI: 10.1007/s12583-017-0756-2
Hydrogeology and Environmental Geology

Analysis of atmospheric turbidity in clear skies at Wuhan, Central China

Author information +
History +

Abstract

The Ångström turbidity coefficient (β) and Linke turbidity factor (T L) are used to study the atmospheric conditions in Wuhan, Central China, using measured direct solar radiation during 2010–2011 in this study. The results show that annual mean β values generally increase from 0.28 in the morning to 0.35 at noon, and then decrease to 0.1 in the late afternoon during the day; annual mean TL generally varies from 3 to 7 in Central China. Both turbidity coefficients have maximum values in spring and summer, while minimum values are observed in winter months. It also reveals that β values show preponderance (52.8%) between 0.15 and 0.35, 78.1% of TL values are between 3.3 and 7.7, which can be compared with other sites around the world. Relationship between turbidity coefficients and main meteorological parameters (humidity, temperature and wind direction) have been further investigated, it is discovered that the local aerosol concentrations, dust events in northern China and Southwest Monsoon from the Indian Ocean influences the β values in the study area.

Keywords

direct solar radiation / Ångström turbidity coefficient / Linke turbidity factor / Central China

Cite this article

Download citation ▾
Lunche Wang, Yisen Chen, Ying Niu, Germán Ariel Salazar, Wei Gong. Analysis of atmospheric turbidity in clear skies at Wuhan, Central China. Journal of Earth Science, 2017, 28(4): 729‒738 https://doi.org/10.1007/s12583-017-0756-2

References

Adamopoulos A. D., Kambezidis H. D., Kaskaoutis D. G., . A Study of Aerosol Particle Sizes in the Atmosphere of Athens, Greece, Retrieved from Solar Spectral Measurements. Atmospheric Research, 2007, 86(3/4): 194-206.
CrossRef Google scholar
Ångström A. Techniques of Determinig the Turbidity of the Atmosphere. Tellus, 1961, 13(2): 214-223.
CrossRef Google scholar
Ångström A. The Parameters of Atmospheric Turbidity. Tellus, 1964, 16(1): 64-75.
CrossRef Google scholar
Bilbao J., Román R., Miguel A. Turbidity Coefficients from Normal Direct Solar Irradiance in Central Spain. Atmospheric Research, 2014, 143: 73-84.
CrossRef Google scholar
Bird R. E., Hulstrom R. L. A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces, 1981
CrossRef Google scholar
Braslau N., Dave J. V. Effect of Aerosols on the Transfer of Solar Energy through Realistic Model Atmospheres. Part I: Non-Absorbing Aerosols. Journal of Applied Meteorology, 1973, 12(4): 601-615.
CrossRef Google scholar
Chaâbane M. Analysis of the Atmospheric Turbidity Levels at Two Tunisian Sites. Atmospheric Research, 2008, 87(2): 136-146.
CrossRef Google scholar
Che H., Zhang X. Y., Xia X., . Ground-Based Aerosol Climatology of China: Aerosol Optical Depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmospheric Chemistry and Physics, 2015, 15(13): 7619-7652.
CrossRef Google scholar
Djafer D., Irbah A. Estimation of Atmospheric Turbidity over Ghardaïa City. Atmospheric Research, 2013, 128: 76-84.
CrossRef Google scholar
Dogniaux R. Representation Analytique des Composantes du Rayonnement Solaire. Institut Royal de Métèorologie de Belgique, 1974.
Ellouz F., Masmoudi M., Medhioub K. Study of the Atmospheric Turbidity over Northern Tunisia. Renewable Energy, 2013, 51: 513-517.
CrossRef Google scholar
El-Metwally M. Indirect Determination of Broadband Turbidity Coefficients over Egypt. Meteorology and Atmospheric Physics, 2013, 119(1/2): 71-90.
CrossRef Google scholar
Feng Q., Wu S. J., Du Y., . Variations of PM10 Concentrations in Wuhan, China. Environmental Monitoring and Assessment, 2010, 176(1/2/3/4): 259-271.
Gong W., Zhang M., Han G., . An Investigation of Aerosol Scattering and Absorption Properties in Wuhan, Central China. Atmosphere, 2015, 6(4): 503-520.
CrossRef Google scholar
Grenier J. C., De La Casinière A., Cabot T. Atmospheric Turbidity Analyzed by Means of Standardized Linke’s Turbidity Factor. Journal of Applied Meteorology, 1995, 34(6): 1449-1458.
CrossRef Google scholar
Gueymard C. A. Importance of Atmospheric Turbidity and Associated Uncertainties in Solar Radiation and Luminous Efficacy Modelling. Energy, 2005, 30(9): 1603-1621.
CrossRef Google scholar
Gueymard C. A., Garrison J. D. Critical Evaluation of Precipitable Water and Atmospheric Turbidity in Canada Using Measured Hourly Solar Irradiance. Solar Energy, 1998, 62(4): 291-307.
CrossRef Google scholar
Hu B., Wang Y. S., Liu G. R. Spatiotemporal Characteristics of Photosynthetically Active Radiation in China. Journal of Geophysical Research, 2007, 112 D14 D14106
CrossRef Google scholar
Hussain M., Khatun S., Rasul M. G. Determination of Atmospheric Turbidity in Bangladesh. Renewable Energy, 2000, 20(3): 325-332.
CrossRef Google scholar
Iqbal M. An Introduction to Solar Radiation, 1983, New York: Academic Press
Jacovides C. P., Kaltsounides N. A., Asimakopoulos D. N., . Spectral Aerosol Optical Depth and Angstrom Parameters in the Polluted Athens Atmosphere. Theoretical and Applied Climatology, 2005, 81(3/4): 161-167.
CrossRef Google scholar
Janjai S., Kumharn W., Laksanaboonsong J. Determination of Angstrom’s Turbidity Coefficient over Thailand. Renewable Energy, 2003, 28(11): 1685-1700.
CrossRef Google scholar
Kaskaoutis D. G., Kambezidis H. D. Comparison of the Ångström Parameters Retrieval in Different Spectral Ranges with the Use of Different Techniques. Meteorology and Atmospheric Physics, 2007, 99(3/4): 233-246.
Kasten F. A Simple Parameterization of the Pyrheliometric Formula for Determining the Linke Turbidity Factor. Meteor. Rundschau, 1980, 33: 124-127.
Kasten F. The Linke Turbidity Factor Based on Improved Values of the Integral Rayleigh Optical Thickness. Solar Energy, 1996, 56(3): 239-244.
CrossRef Google scholar
Leckner B. The Spectral Distribution of Solar Radiation at the Earth’s Surface—Elements of a Model. Solar Energy, 1978, 20(2): 143-150.
CrossRef Google scholar
Li D. H. W., Lam J. C. A Study of Atmospheric Turbidity for Hong Kong. Renewable Energy, 2002, 25(1): 1-13.
CrossRef Google scholar
Li K. M., Li Z. Q., Wang C. Y., . Shrinkage of Mt. Bogda Glaciers of Eastern Tian Shan in Central Asia during 1962–2006. Journal of Earth Science, 2016, 27(1): 139-150.
CrossRef Google scholar
Lin A. W., Zou L., Wang L., . Estimation of Atmospheric Turbidity Coefficient over Zhengzhou during 1961–2013. Renewable Energy, 2016, 86: 1134-1144.
CrossRef Google scholar
Linke F. Transmissions Koeffizient und Trubungsfaktor. Beitraége Zur Physik der Atmosphaére, 1922, 10: 91-103.
Long C. N., Ackerman T. P. Identification of Clear Skies from Broadband Pyranometer Measurements and Calculation of Downwelling Shortwave Cloud Effects. Journal of Geophysical Research: Atmospheres, 2000, 105(D12): 15609-15626.
CrossRef Google scholar
López G., Batlles F. J. Estimate of the Atmospheric Turbidity from Three Broad-Band Solar Radiation Algorithms: A Comparative Study. Annales Geophysicae, 2004, 22(8): 2657-2668.
CrossRef Google scholar
Louche A., Maurel M., Simonnot G., . Determination of Ångström’s Turbidity Coefficient from Direct Total Solar Irradiance Measurements. Solar Energy, 1987, 38(2): 89-96.
CrossRef Google scholar
Malik A. Q. A Modified Method of Estimating Ångström’s Turbidity Coefficient for Solar Radiation Models. Renewable Energy, 2000, 21(3/4): 537-552.
CrossRef Google scholar
Mavromatakis F., Franghiadakis Y. Direct and Indirect Determination of the Linke Turbidity Coefficient. Solar Energy, 2007, 81(7): 896-903.
CrossRef Google scholar
Pan Z. T., Zhang Y. J., Liu X. D., . Current and Future Precipitation Extremes over Mississippi and Yangtze River Basins as Simulated in CMIP5 Models. Journal of Earth Science, 2016, 27(1): 22-36.
CrossRef Google scholar
Pedrós R., Utrillas M. P., Martínez-Lozano J. A., . Values of Broad Band Turbidity Coefficients in a Mediterranean Coastal Site. Solar Energy, 1999, 66(1): 11-20.
CrossRef Google scholar
Power H. C. Estimating Atmospheric Turbidity from Climate Data. Atmospheric Environment, 2001, 35(1): 125-134.
CrossRef Google scholar
Salazar G. A. Estimation of Monthly Values of Atmospheric Turbidity Using Measured Values of Global Irradiation and Estimated Values from CSR and Yang Hybrid Models. Study Case: Argentina. Atmospheric Environment, 2011, 45(15): 2465-2472.
CrossRef Google scholar
Salazar G., Utrillas P., Esteve A., . Estimation of Daily Average Values of the Ångström Turbidity Coefficient β Using a Corrected Yang Hybrid Model. Renewable Energy, 2013, 51: 182-188.
CrossRef Google scholar
Sapkota B., Dhaubhadel R. Atmospheric Turbidity over Kathmandu Valley. Atmospheric Environment, 2002, 36(8): 1249-1257.
CrossRef Google scholar
Trabelsi A., Masmoudi M. An Investigation of Atmospheric Turbidity over Kerkennah Island in Tunisia. Atmospheric Research, 2011, 101(1/2): 22-30.
CrossRef Google scholar
Trenberth K. E., Fasullo J. T., Kiehl J. Earth’s Global Energy Budget. Bulletin of the American Meteorological Society, 2009, 90(3): 311-323.
CrossRef Google scholar
Wang L. C., Gong W., Li C., . Measurement and Estimation of Photosynthetically Active Radiation from 1961 to 2011 in Central China. Applied Energy, 2013, 111: 1010-1017.
CrossRef Google scholar
Wang L. C., Gong W., Ma Y. Y., . Photosynthetically Active Radiation and Its Relationship with Global Solar Radiation in Central China. International Journal of Biometeorology, 2014, 58(6): 1265-1277.
CrossRef Google scholar
Wang L. C., Gong W., Li J., . Empirical Studies of Cloud Effects on Ultraviolet Radiation in Central China. International Journal of Climatology, 2014, 34(7): 2218-2228.
CrossRef Google scholar
Wang L. C., Gong W., Xia X. G., . Long-Term Observations of Aerosol Optical Properties at Wuhan, an Urban Site in Central China. Atmospheric Environment, 2015, 101: 94-102.
CrossRef Google scholar
Wang L. C., Gong W., Ramesh P., . Aerosol Optical Properties over Mount Song, a Rural Site in Central China. Aerosol and Air Quality Research, 2015, 15: 2051-2064.
Wang L. C., Salazar G. A., Gong W., . An Improved Method for Estimating the Ångström Turbidity Coefficient β in Central China during 1961–2010. Energy, 2015, 81: 67-73.
CrossRef Google scholar
Wang L. C., Kisi O., Zounemat-Kermani M., . Solar Radiation Prediction Using Different Techniques: Model Evaluation and Comparison. Renewable and Sustainable Energy Reviews, 2016, 61: 384-397.
CrossRef Google scholar
Wang Y. Q., Zhang X. Y., Sun J. Y., . Spatial and Temporal Variations of the Concentrations of PM10, PM2.5 and PM1 in China. Atmospheric Chemistry and Physics Discussions, 2015, 15(11): 15319-15354.
CrossRef Google scholar
Wen C. C., Yeh H. H. Analysis of Atmospheric Turbidity Levels at Taichung Harbor near the Taiwan Strait. Atmospheric Research, 2009, 94(2): 168-177.
CrossRef Google scholar
Wild M., Gilgen H., Roesch A., . From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science, 2005, 308(5723): 847-850.
CrossRef Google scholar
Xia X. A., Chen H. B., Wang P. C., . Variation of Column-Integrated Aerosol Properties in a Chinese Urban Region. Journal of Geophysical Research, 2006, 111 D5 D05204
CrossRef Google scholar
Xia X. G., Li Z. Q., Holben B., . Aerosol Optical Properties and Radiative Effects in the Yangtze Delta Region of China. Journal of Geophysical Research, 2007, 112 D22 D22S12.
Yu X. N., Zhu B., Zhang M. G. Seasonal Variability of Aerosol Optical Properties over Beijing. Atmospheric Environment, 2009, 43(26): 4095-4101.
CrossRef Google scholar
Zakey A., Abdelwahab M., Makar P. A. Atmospheric Turbidity over Egypt. Atmospheric Environment, 2004, 38(11): 1579-1591.
CrossRef Google scholar
Zhuang B. L., Wang T. J., Li S., . Optical Properties and Radiative Forcing of Urban Aerosols in Nanjing, China. Atmospheric Environment, 2014, 83: 43-52.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/