Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction

Jianping Wang , Zhenjiang Liu , Jiajun Liu , Xiangtao Zeng , Kexin Wang , Bizheng Liu , Huan Wang , Chonghao Liu , Fangfang Zhang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 564 -572.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 564 -572. DOI: 10.1007/s12583-017-0751-7
Mineral Deposits

Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction

Author information +
History +
PDF

Abstract

The Shuangwang gold deposit, located in the Fengxian-Taibai fore-arc basin in the western Qinling Orogen of Central China, has yielded over 70 tons of gold. It is an orogenic gold deposit occurring in an NW-trending breccia belt. Most of the ores are hydrothermal breccia type containing fragments of adjacent strata cemented by ankerite and pyrite. Pyrite is the most abundant metallic mineral and the major gold-bearing mineral in the ores. A total of 58 pyrite samples from main ore bodies of the Shuangwang gold deposit have been analysed for 44 trace elements by HR-ICP-MS. Sb, Ba, Cu, Pb, Zn, Bi, Mo, Co are selected as indicator elements to investigate the potential usefulness of trace elements in pyrite as an indicator in gold exploration. The results show that the supra-ore halo elements Sb and Ba, which may have been more active than other near-ore halo elements and sub-ore halo elements, are best to characterize the shape of ore bodies. Five target areas are pointed out for deep ore exploration based on a comprehensive study of supra-ore, near-ore and sub-ore halos. This study provides evidence that trace elements in pyrite can be used to depict the deep extension of ore bodies and to vector towards undiscovered ore bodies.

Keywords

western Qinling Orogen / Shuangwang gold deposit / pyrite / trace element / deep ore prediction

Cite this article

Download citation ▾
Jianping Wang, Zhenjiang Liu, Jiajun Liu, Xiangtao Zeng, Kexin Wang, Bizheng Liu, Huan Wang, Chonghao Liu, Fangfang Zhang. Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction. Journal of Earth Science, 2018, 29(3): 564-572 DOI:10.1007/s12583-017-0751-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker T., Mustard R., Brown V., . Textural and Chemical Zonation of Pyrite at Pajingo: A Potential Vector to Epithermal Gold Veins. Geochemistry: Exploration, Environment, Analysis, 2006, 6(4): 283-293.

[2]

Cline J. S., Hofstra A. H., Muntean J. L., . Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models. Economic Geology, 2005, 100: 451-484.

[3]

Cook N. J., Ciobanu C. L., Meria D., . Arsenopyrite-Pyrite Association in an Orogenic Gold Ore: Tracing Mineralization History from Textures and Trace Elements. Economic Geology, 2013, 108(6): 1273-1283.

[4]

Deditius A. P., Reich M., Kesler S. E., . The Coupled Geochemistry of Au and as in Pyrite from Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 2014, 140: 644-670.

[5]

Dong Y. P., Zhang G. W., Neubauer F., . Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.

[6]

Feng J. Z., Wang D. B., Wang X. M. Determination of the Au Background Value and Au Geochemistry in the Devonian of the West Qinling and Their Geological Significance. Geology of China., 2005, 32(1): 100-106.

[7]

Franchini M., McFarlane C., Maydagán L., . Trace Metals in Pyrite and Marcasite from the Agua Rica Porphyry-High Sulfidation Epithermal Deposit, Catamarca, Argentina: Textural Features and Metal Zoning at the Porphyry to Epithermal Transition. Ore Geology Reviews, 2015, 66(2): 366-387.

[8]

Goldfarb R. J., Taylor R. D., Collins G. S., . Phanerozoic Continental Growth and Gold Metallogeny of Asia. Gondwana Resarch, 2014, 25(1): 48-102.

[9]

Lai S. C., Zhang G. W., Yang Y. C., . Geochemistry of the Ophiolite and Island-Arc Volcanic Rocks in the Mianxian-Lueyang Suture Zone, Southern Qinling and Their Tectonic Significance. Chinese Journal of Geochemistry, 1998, 18(1): 39-50.

[10]

Large R. R., Bull S. W., Maslennikov V. V. A Carbonaceous Sedimentary Source Rock Model for Carlin-Type and Orogenic Gold Deposits. Economic Geology, 2011, 106(3): 331-358.

[11]

Large R. R., Danyushevsky L., Hollit C., . Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology, 2009, 104(5): 635-668.

[12]

Li H., Wang Z. N., Li F. G. Ideal Models of Superimposed Primary Halos in Hydrothermal Gold Deposits. Journal of Geochemical Exploration, 1995, 55(1–3): 329-336.

[13]

Li S. G., Xiao Y. L., Liou D. L., . Collision of the North China and Yangtze Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 1993, 109(1–4): 89-111.

[14]

Li X. Z., Yan Z., Lu X. X. Granites of Qinling-Dabie Orogen, 1993, 1-215.

[15]

Li Y. J., Ding S. P., Chen Y. B., . New Knowledge on the Wenquan Granite in Western Qinling. Geology and Mineral Resources of South China, 2003, 19(3): 8-11.

[16]

Li Z. P., Peters S. G. Comparative Geology and Geochemistry of Sedimentary-Rock-Hosted (Carlin-Type) Gold Deposits in the People’s Republic of China and in Nevada, USA, 1998, 98-466.

[17]

Mao J. W., Qiu Y. M., Goldfarb R. J., . Geology, Distribution, and Classification of Gold Deposits in the Western Qinling Belt, Central China. Mineralium Deposita, 2002, 37(3/4): 352-377.

[18]

Mattauer M., Mattle P., Malavieille J., . Tectonics of Qinling Belt: Build-up and Evolution of Eastern Asia. Nature, 1985, 317(6037): 496-500.

[19]

Muntean J. L., Cline J. S., Simon A. C., . Magmatic-Hydrothermal Origin of Nevada’s Carlin-Type Gold Deposits. Nature Geoscience, 2011, 4(2): 122-127.

[20]

Ratschbacher L., Hacker B. R., Calvert A., . Tectonics of the Qingling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 2003, 366(1/2): 1-53.

[21]

Ren P., Liang T., Niu L., . Geological Characteristic and Geodynamic Process from Pb-Zn Deposit in Qinling of Shaanxi. Journal of Earth Science Environment, 2013, 35(1): 34-47.

[22]

Roberts F. I. Trace Element Chemistry of Pyrite: A Useful Guide to the Occurrence of Sulfide Base Metal Mineralization. Journal of Geochemical Exploration, 1982, 17(1): 49-62.

[23]

Shi Z. L., Liu J. X., Fan S. C. Geological Characteristics and Genesis of the Shuangwang Gold Deposit, Shaanxi Province, 1989, 1-116.

[24]

Su W. C., Xia B., Zhang H. T., . Visible Gold in Arsenian Pyrite at the Shuiyindong Carlin-Type Gold Deposit, Guizhou, China: Implications for the Environment and Processes of Ore Formation. Ore Geology Reviews, 2008, 33(3/4): 667-679.

[25]

Wang X. X., Zattin M., Li J. J., . Cenozoic Tectonic Uplift History of Western Qinling: Evidence from Sedimentary and Fission-Track Data. Journal of Earth Science, 2013, 24(4): 491-505.

[26]

Wang H. The Features of Magmatic Rocks in Shuangwang Gold Mine, Shanxi Province and Its Implication on Gold Mineralization: [Dissertation], 2012, 1-103.

[27]

Wang Z. Q., Yan Q. R., Yan Z. New Division of the Main Tectonic Units of the Qinling Orogenic Belt, Central China. Acta Geologica Sinica, 2009, 83(11): 1527-1546.

[28]

Yao, S. Z., Ding, Z. J., Zhou, Z. G., et al., 2005. An Ore-Forming Model for Pb-Zn Deposits in the Qinling Orogenic Belt, China. In: Mao, J. W., ed., Mineral Deposit Research: Meeting the Global Challenge. Springer Berlin Heidelberg, Berlin. 215–217. https://doi.org/10.1007/3-540-27946-6_56

[29]

Yuan W. M., Mo X. X., Zhang A. K., . Fission Track Thermochronology Evidence for Multiple Periods of Mineralization in the Wulonggou Gold Deposits, Eastern Kunlun Mountains, Qinghai Province. Journal of Earth Science, 2013, 24(4): 471-478.

[30]

Zeng Q. S., Wang J. C., Chen G. H. Formation of Gold-Bearing Hydrofracturing Breccia Bodies in Tectonic Lenses: A Case Study on the Shuangwang Gold Deposit, Shaanxi, China. Geotectonica et Metallogenia, 2005, 29(2): 93-106.

[31]

Zeng Q. T., McCuaig T. C., Hart C. J. R., . Structural and Geochronological Studies on the Liba Goldfield of the West Qinling Orogen, Central China. Mineralium Deposita, 2012, 47(7): 799-819.

[32]

Zhai X. M., Day H. W., Hacker B. R., . Paleozoic Metamorphism in the Qinling Orogen, Tongbai Mountains, Central China. Geology, 1998, 26(4): 371-374.

[33]

Zhang H. F., Jin L. L., Zhang L., . Geochemical and Pb-Sr-Nd Isotopic Compositions of Granitoids from Western Qinling Belt: Constraints on Basement Nature and Tectonic Affinity. Science in China Series D: Earth Sciences, 2007, 50(2): 184-196.

[34]

Zhang Z. H., Mao J. W., Li X. F. Geology, Geochemistry and Metallogenic Mechanism of the Shuangwang Breccia Type Gold Deposit. Mineral Deposits, 2004, 23(2): 241-252.

[35]

Zhou T. H., Goldfarb R. J., Phillips G. N. Tectonics and Distribution of Gold Deposits in China—An Overview. Mineralium Deposita, 2002, 37(3/4): 249-282.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/