Heat shielding effects in the Earth’s crust

Yixian Xu, Lupei Zhu, Qinyan Wang, Yinhe Luo, Jianghai Xia

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 161-167.

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 161-167. DOI: 10.1007/s12583-017-0744-6
Geodynamics

Heat shielding effects in the Earth’s crust

Author information +
History +

Abstract

Knowledge of heat flow and associated variations of temperature with depth is crucial for understanding how the Earth functions. Here, we demonstrate possible heat shielding effects that result from the occurrence of mafic intrusions/layers (granulitic rocks) within a dominantly granitic middle crust and/or ultramafic intrusions/layers (peridotitic rocks) within a dominantly granulitic lower crust; heat shielding is a familiar phenomenon in heat engineering and thermal metamaterials. Simple one-dimensional calculations suggest that heat shielding due to the intercalation of granitic, granulitic and peridotitic rocks will increase Moho temperatures substantially. This study may lead to a rethinking of numerous proposed lower crustal processes.

Keywords

geotherm / crustal laminated structure / heat shielding / heat conductivity / peridotitic intrusions / North Tibet / magnetotelluric data

Cite this article

Download citation ▾
Yixian Xu, Lupei Zhu, Qinyan Wang, Yinhe Luo, Jianghai Xia. Heat shielding effects in the Earth’s crust. Journal of Earth Science, 2017, 28(1): 161‒167 https://doi.org/10.1007/s12583-017-0744-6

References

Artemieva I. M. Global 1º×1º Thermal Model TC1 for the Continental Lithosphere: Implications for Lithosphere Secular Evolution. Tectonophysics, 2006, 416(1–4): 245-277.
CrossRef Google scholar
Bailey R. C. Gravity-Driven Continental Overflow and Archaean Tectonics. Nature, 1999, 398(6726): 413-415.
CrossRef Google scholar
Bergantz G. W. Underplating and Partial Melting: Implications for Melt Generation and Extraction. Science, 1989, 245(4922): 1093-1095.
CrossRef Google scholar
Bird P. Continental Delamination and the Colorado Plateau. Journal of Geophysical Research, 1979, 84: 7561-7571.
CrossRef Google scholar
Carcione J. M., Kosloff D., Behle A. Long-Wave Anisotropy in Stratified Media: A Numerical Test. Geophysics, 1991, 56(2): 245-254.
CrossRef Google scholar
Finlayson D. M., Owen A., Johnstone D., . Moho and Petrologic Crust-Mantle Boundary Coincide under Southeastern Australia. Geology, 1993, 21 8 707
CrossRef Google scholar
Furlong K. P., Chapman D. S. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 2013, 41(1): 385-410.
CrossRef Google scholar
Gelman S. E., Gutierrez F. J., Bachmann O. On the Longevity of Large Upper Crustal Silicic Magma Reservoirs. Geology, 2013, 41(7): 759-762.
CrossRef Google scholar
Hale L. D., Thompson G. A. The Seismic Reflection Character of the Continental Mohorovicic Discontinuity. Journal of Geophysical Research: Solid Earth, 1982, 87: 4625-4635.
CrossRef Google scholar
Hasterok D. A Heat Flow Based Cooling Model for Tectonic Plates. Earth and Planetary Science Letters, 2013, 361: 34-43.
CrossRef Google scholar
Hasterok D., Chapman D. S. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters, 2011, 307(1/2): 59-70.
CrossRef Google scholar
Jaupart C., Mareschal J. C. Shubert G., Watts A. Heat Flow and Thermal Structure of the Lithosphere. Treatise on Geophysics: Crust and Lithospheric Dynamics, 2007, 217-251.
Li S. H., Unsworth M. J., Booker J. R., . Partial Melt or Aqueous Fluid in the Mid-Crust of Southern Tibet? Constraints from INDEPTH Magnetotelluric Data. Geophysical Journal International, 2003, 153(2): 289-304.
CrossRef Google scholar
Luo Y. H., Xu Y. X., Yang Y. J. Crustal Radial Anisotropy beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Geophysical Journal International, 2013, 195(2): 1149-1164.
CrossRef Google scholar
Luo Y. H., Xu Y. X., Yang Y. J. Crustal Structure beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Earth and Planetary Science Letters, 2012, 313/314: 12-22.
CrossRef Google scholar
Makovsky Y., Klemperer S. L. Measuring the Seismic Properties of Tibetan Bright Spots: Evidence for Free Aqueous Fluids in the Tibetan Middle Crust. Journal of Geophysical Research: Solid Earth, 1999, 104(B5): 10795-10825.
CrossRef Google scholar
Maldovan M. Sound and Heat Revolutions in Phononics. Nature, 2013, 503(7475): 209-217.
CrossRef Google scholar
McKenzie D., Jackson J., Priestley K. Thermal Structure of Oceanic and Continental Lithosphere. Earth and Planetary Science Letters, 2005, 233(3/4): 337-349.
CrossRef Google scholar
Merriman J. D., Whittington A. G., Hofmeister A. M., . Thermal Transport Properties of Major Archean Rock Types to High Temperature and Implications for Cratonic Geotherms. Precambrian Research, 2013, 233: 358-372.
CrossRef Google scholar
Mooney W. D. Romanowicz B., Dziewonski A. Crust and Lithospheric Structure-Global Crustal Structure. Treatise on Geophysics: Seismology and Structure of the Earth, 2007, San Francisco: Elsevier, 361-417.
Narayana S., Sato Y. Heat Flux Manipulation with Engineered Thermal Materials. Phys. Res. Lett., 2012, 108 214303
CrossRef Google scholar
Nelson K. D., Zhao W., Brown L. D., . Partially Molten Middle Crust beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, 1996, 274: 1684-1688.
CrossRef Google scholar
Niu F., James D. E. Fine Structure of the Lowermost Crust beneath the Kaapvaal Craton and Its Implications for Crustal Formation and Evolution. Earth and Planetary Science Letters, 2002, 200(1/2): 121-130.
CrossRef Google scholar
O’Reilly S. Y., Griffin W. L. Moho vs. Crust-Mantle Boundary: Evolution of an Idea. Tectonophysics, 2013, 609: 535-546.
O’Reilly B. M., Hauser F., Readman P. W. The Fine-Scale Structure of Upper Continental Lithosphere from Seismic Waveform Methods: Insights into Phanerozoic Crustal Formation Processes. Geophys. J. Int., 2010, 180(1): 101-124.
CrossRef Google scholar
Petford N., Cruden A. R., McCaffrey K. J., . Granite Magma Formation, Transport and Emplacement in the Earth’s Crust. Nature, 2000, 408(6813): 669-673.
CrossRef Google scholar
Royden L. H., Royden L. H., Burchfiel B. C., . Surface Deformation and Lower Crust Flow in Eastern Tibet. Science, 1997, 276: 788-790.
CrossRef Google scholar
Rychert C. A., Shearer P. M. A Global View of the Lithosphere-Asthenosphere Boundary. Science, 2009, 324(5926): 495-498.
CrossRef Google scholar
Searle M. Crustal Melting, Ductile Flow, and Deformation in Mountain Belts: Cause and Effect Relationships. Lithosphere, 2013, 5(6): 547-554.
CrossRef Google scholar
Shen X. J., Zhang W. R., Yang S. Z., . Heat Flow Evidence for the Differentiated Crust-Mantle Thermal Structures of the Northern and Southern Terranes of the Qinghai-Xizang Plateau. Bulletin of the Chinese Academy of Geological Sciences, 1990, 21: 203-214.
Stratford W., Thybo H. Crustal Structure and Composition of the Oslo Graben, Norway. Earth and Planetary Science Letters, 2011, 304(3/4): 431-442.
CrossRef Google scholar
Teng J. W., Zhang Z. J., Zhang X. K., . Investigation of the Moho Discontinuity beneath the Chinese Mainland Using Deep Seismic Sounding Profiles. Tectonophysics, 2013, 609(8): 202-216.
CrossRef Google scholar
Thompson A. B. Castro A., Fernandez C., Vigneresse J. L. Integrating New and Classical Techniques. Understanding Granites. Geol. Soc. London Special Publ., 1999, 7-25.
Thybo H., Nielsen C. A. Magma-Compensated Crustal Thinning in Continental Rift Zones. Nature, 2009, 457(7231): 873-876.
CrossRef Google scholar
Thybo H., Artemieva I. M. Moho and Magmatic Underplating in Continental Lithosphere. Tectonophysics, 2013, 609(8): 605-619.
CrossRef Google scholar
Unsworth M. J., Jones A. G., Wei W., . Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data. Nature, 2005, 438(7064): 78-81.
CrossRef Google scholar
van den Berg A. P. V. D., Yuen D. A. Delayed Cooling of the Earth’s Mantle due to Variable Thermal Conductivity and the Formation of a Low Conductivity Zone. Earth and Planetary Science Letters, 2002, 199(3/4): 403-413.
CrossRef Google scholar
Wei W. B., Jin S., Ye G. F., . Conductivity Structure of Crust and Upper Mantle beneath the Northern Tibetan Plateau: Results of Super-Wide Band Magnetotelluric Sounding. Chinese J. Geophys., 2006, 49: 1215-1225.
Wei W., Unsworth M., Jones A. G., . Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science, 2001, 292(5517): 716-719.
CrossRef Google scholar
Whittington A. G., Hofmeister A. M., Nabelek P. I. Temperature-Dependent Thermal Diffusivity of the Earth’s Crust and Implications for Magmatism. Nature, 2009, 458(7236): 319-321.
CrossRef Google scholar
Yang W. C. The Crust and Upper Mantle of the Sulu UHPM Belt. Tectonophysics, 2009, 475(2): 226-234.
CrossRef Google scholar
Yuan X. C., Klemperer S. L., Tang W., . Crustal Structure and Exhumation of the Dabie Shan Ultrahigh-Pressure Orogen, Eastern China, from Seismic Reflection Profiling. Geology, 2003, 31: 435-438.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/