Heat shielding effects in the Earth’s crust

Yixian Xu , Lupei Zhu , Qinyan Wang , Yinhe Luo , Jianghai Xia

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 161 -167.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 161 -167. DOI: 10.1007/s12583-017-0744-6
Geodynamics

Heat shielding effects in the Earth’s crust

Author information +
History +
PDF

Abstract

Knowledge of heat flow and associated variations of temperature with depth is crucial for understanding how the Earth functions. Here, we demonstrate possible heat shielding effects that result from the occurrence of mafic intrusions/layers (granulitic rocks) within a dominantly granitic middle crust and/or ultramafic intrusions/layers (peridotitic rocks) within a dominantly granulitic lower crust; heat shielding is a familiar phenomenon in heat engineering and thermal metamaterials. Simple one-dimensional calculations suggest that heat shielding due to the intercalation of granitic, granulitic and peridotitic rocks will increase Moho temperatures substantially. This study may lead to a rethinking of numerous proposed lower crustal processes.

Keywords

geotherm / crustal laminated structure / heat shielding / heat conductivity / peridotitic intrusions / North Tibet / magnetotelluric data

Cite this article

Download citation ▾
Yixian Xu, Lupei Zhu, Qinyan Wang, Yinhe Luo, Jianghai Xia. Heat shielding effects in the Earth’s crust. Journal of Earth Science, 2017, 28(1): 161-167 DOI:10.1007/s12583-017-0744-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Artemieva I. M. Global 1º×1º Thermal Model TC1 for the Continental Lithosphere: Implications for Lithosphere Secular Evolution. Tectonophysics, 2006, 416(1–4): 245-277.

[2]

Bailey R. C. Gravity-Driven Continental Overflow and Archaean Tectonics. Nature, 1999, 398(6726): 413-415.

[3]

Bergantz G. W. Underplating and Partial Melting: Implications for Melt Generation and Extraction. Science, 1989, 245(4922): 1093-1095.

[4]

Bird P. Continental Delamination and the Colorado Plateau. Journal of Geophysical Research, 1979, 84: 7561-7571.

[5]

Carcione J. M., Kosloff D., Behle A. Long-Wave Anisotropy in Stratified Media: A Numerical Test. Geophysics, 1991, 56(2): 245-254.

[6]

Finlayson D. M., Owen A., Johnstone D., . Moho and Petrologic Crust-Mantle Boundary Coincide under Southeastern Australia. Geology, 1993, 21 8 707

[7]

Furlong K. P., Chapman D. S. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 2013, 41(1): 385-410.

[8]

Gelman S. E., Gutierrez F. J., Bachmann O. On the Longevity of Large Upper Crustal Silicic Magma Reservoirs. Geology, 2013, 41(7): 759-762.

[9]

Hale L. D., Thompson G. A. The Seismic Reflection Character of the Continental Mohorovicic Discontinuity. Journal of Geophysical Research: Solid Earth, 1982, 87: 4625-4635.

[10]

Hasterok D. A Heat Flow Based Cooling Model for Tectonic Plates. Earth and Planetary Science Letters, 2013, 361: 34-43.

[11]

Hasterok D., Chapman D. S. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters, 2011, 307(1/2): 59-70.

[12]

Jaupart C., Mareschal J. C. Shubert G., Watts A. Heat Flow and Thermal Structure of the Lithosphere. Treatise on Geophysics: Crust and Lithospheric Dynamics, 2007, 217-251.

[13]

Li S. H., Unsworth M. J., Booker J. R., . Partial Melt or Aqueous Fluid in the Mid-Crust of Southern Tibet? Constraints from INDEPTH Magnetotelluric Data. Geophysical Journal International, 2003, 153(2): 289-304.

[14]

Luo Y. H., Xu Y. X., Yang Y. J. Crustal Radial Anisotropy beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Geophysical Journal International, 2013, 195(2): 1149-1164.

[15]

Luo Y. H., Xu Y. X., Yang Y. J. Crustal Structure beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Earth and Planetary Science Letters, 2012, 313/314: 12-22.

[16]

Makovsky Y., Klemperer S. L. Measuring the Seismic Properties of Tibetan Bright Spots: Evidence for Free Aqueous Fluids in the Tibetan Middle Crust. Journal of Geophysical Research: Solid Earth, 1999, 104(B5): 10795-10825.

[17]

Maldovan M. Sound and Heat Revolutions in Phononics. Nature, 2013, 503(7475): 209-217.

[18]

McKenzie D., Jackson J., Priestley K. Thermal Structure of Oceanic and Continental Lithosphere. Earth and Planetary Science Letters, 2005, 233(3/4): 337-349.

[19]

Merriman J. D., Whittington A. G., Hofmeister A. M., . Thermal Transport Properties of Major Archean Rock Types to High Temperature and Implications for Cratonic Geotherms. Precambrian Research, 2013, 233: 358-372.

[20]

Mooney W. D. Romanowicz B., Dziewonski A. Crust and Lithospheric Structure-Global Crustal Structure. Treatise on Geophysics: Seismology and Structure of the Earth, 2007, San Francisco: Elsevier, 361-417.

[21]

Narayana S., Sato Y. Heat Flux Manipulation with Engineered Thermal Materials. Phys. Res. Lett., 2012, 108 214303

[22]

Nelson K. D., Zhao W., Brown L. D., . Partially Molten Middle Crust beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, 1996, 274: 1684-1688.

[23]

Niu F., James D. E. Fine Structure of the Lowermost Crust beneath the Kaapvaal Craton and Its Implications for Crustal Formation and Evolution. Earth and Planetary Science Letters, 2002, 200(1/2): 121-130.

[24]

O’Reilly S. Y., Griffin W. L. Moho vs. Crust-Mantle Boundary: Evolution of an Idea. Tectonophysics, 2013, 609: 535-546.

[25]

O’Reilly B. M., Hauser F., Readman P. W. The Fine-Scale Structure of Upper Continental Lithosphere from Seismic Waveform Methods: Insights into Phanerozoic Crustal Formation Processes. Geophys. J. Int., 2010, 180(1): 101-124.

[26]

Petford N., Cruden A. R., McCaffrey K. J., . Granite Magma Formation, Transport and Emplacement in the Earth’s Crust. Nature, 2000, 408(6813): 669-673.

[27]

Royden L. H., Royden L. H., Burchfiel B. C., . Surface Deformation and Lower Crust Flow in Eastern Tibet. Science, 1997, 276: 788-790.

[28]

Rychert C. A., Shearer P. M. A Global View of the Lithosphere-Asthenosphere Boundary. Science, 2009, 324(5926): 495-498.

[29]

Searle M. Crustal Melting, Ductile Flow, and Deformation in Mountain Belts: Cause and Effect Relationships. Lithosphere, 2013, 5(6): 547-554.

[30]

Shen X. J., Zhang W. R., Yang S. Z., . Heat Flow Evidence for the Differentiated Crust-Mantle Thermal Structures of the Northern and Southern Terranes of the Qinghai-Xizang Plateau. Bulletin of the Chinese Academy of Geological Sciences, 1990, 21: 203-214.

[31]

Stratford W., Thybo H. Crustal Structure and Composition of the Oslo Graben, Norway. Earth and Planetary Science Letters, 2011, 304(3/4): 431-442.

[32]

Teng J. W., Zhang Z. J., Zhang X. K., . Investigation of the Moho Discontinuity beneath the Chinese Mainland Using Deep Seismic Sounding Profiles. Tectonophysics, 2013, 609(8): 202-216.

[33]

Thompson A. B. Castro A., Fernandez C., Vigneresse J. L. Integrating New and Classical Techniques. Understanding Granites. Geol. Soc. London Special Publ., 1999, 7-25.

[34]

Thybo H., Nielsen C. A. Magma-Compensated Crustal Thinning in Continental Rift Zones. Nature, 2009, 457(7231): 873-876.

[35]

Thybo H., Artemieva I. M. Moho and Magmatic Underplating in Continental Lithosphere. Tectonophysics, 2013, 609(8): 605-619.

[36]

Unsworth M. J., Jones A. G., Wei W., . Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data. Nature, 2005, 438(7064): 78-81.

[37]

van den Berg A. P. V. D., Yuen D. A. Delayed Cooling of the Earth’s Mantle due to Variable Thermal Conductivity and the Formation of a Low Conductivity Zone. Earth and Planetary Science Letters, 2002, 199(3/4): 403-413.

[38]

Wei W. B., Jin S., Ye G. F., . Conductivity Structure of Crust and Upper Mantle beneath the Northern Tibetan Plateau: Results of Super-Wide Band Magnetotelluric Sounding. Chinese J. Geophys., 2006, 49: 1215-1225.

[39]

Wei W., Unsworth M., Jones A. G., . Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science, 2001, 292(5517): 716-719.

[40]

Whittington A. G., Hofmeister A. M., Nabelek P. I. Temperature-Dependent Thermal Diffusivity of the Earth’s Crust and Implications for Magmatism. Nature, 2009, 458(7236): 319-321.

[41]

Yang W. C. The Crust and Upper Mantle of the Sulu UHPM Belt. Tectonophysics, 2009, 475(2): 226-234.

[42]

Yuan X. C., Klemperer S. L., Tang W., . Crustal Structure and Exhumation of the Dabie Shan Ultrahigh-Pressure Orogen, Eastern China, from Seismic Reflection Profiling. Geology, 2003, 31: 435-438.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/