Tracing escaping structure in the Northern Indo-China Peninsula by Openness and remote sensing

Jie Zhang , Qinglai Feng , Zhi Zhang

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 147 -160.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 147 -160. DOI: 10.1007/s12583-017-0743-7
Mathematical Geology and Remote Sensing Geology

Tracing escaping structure in the Northern Indo-China Peninsula by Openness and remote sensing

Author information +
History +
PDF

Abstract

The Openness based on DEM emphasizes the terrain convexity and concavity. It facilitates the interpretation of detailed landforms on the Earth’s surface. Compared with the layer stacking of ETM+ with less three-dimensionality and visualizability and with indefinite details of linear images in the deep cutting or deep covered region, the Openness is used for accurate interpretation of tectonic geomorphic units and linear structures. In this paper, the ETM+ images (741 RGB) and RRIM based on Openness combined with the field geological investigation are used to trace the escaping structure in SE Asia. The east boundary is Ailaoshan shear zone and the west boundary is Uttaradit-Dien Bien Phu fault, which together form the southwards extruding wedge block. The arc boundary surface of the southern Khorat Plateau is jutted to the north. The NW and NE sides of Khorat Plateau are traversed by Uttaradit-Dien Bien Phu fault and Thakhek-Da Nang fault, respectively, resulting in a blocked escaping structure. The SE margins of Truong Son structure belt and Song Ma structure belt are both arcs jutting to SE. These arc structures clamped by faults or related to the fault on one side indicating the material flow direction obviously, are the most specific manifestation of escaping structures. Moreover, these push units are extruded from south to north successively.

Keywords

Openness / Indo-China Peninsula / escaping structure / remote sensing

Cite this article

Download citation ▾
Jie Zhang, Qinglai Feng, Zhi Zhang. Tracing escaping structure in the Northern Indo-China Peninsula by Openness and remote sensing. Journal of Earth Science, 2017, 28(1): 147-160 DOI:10.1007/s12583-017-0743-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao S., Liu J., Leiss B., . Oligo-Miocene Shearing along the Ailao Shan-Red River Shear Zone: Constraints from Structural Analysis and Zircon U/Pb Geochronology of Magmatic Rocks in the Diancang Shan Massif, SETibet, China. Gondwana Research, 2011, 19(4): 975-993.

[2]

Cao S., Liu J., Leiss B., . Timing of Initiation of Left-Lateral Slip along the Ailao Shan-Red River Shear Zone: Microstructural, Texture and Thermochronological Evidence from High Temperature Mylonites in Diancang Shan, SWChina. Acta Geologica Sinica, 2009, 83(10): 1388-1400.

[3]

Chavez P. S. Cook J. J. Digital Processing Techniques for Image Mapping with Landsat TM and SPOT Simulator Data. Proceedings of the Eighteenth International Symposium on Remote Sensing of Environment, Paris, 1984, 101-116.

[4]

Chiba T., Kaneta S., Suzuki Y. Red Relief Image Map: New Visualization Method for Three Dimensional Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(B2): 1071-1076.

[5]

Elmahdy S. I., Mohamed M. M. Relationship between Geological Structures and Groundwater Flow and Groundwater Salinity in Al Jaaw Plain, United Arab Emirates: Mapping and Analysis by Means of Remote Sensing and GIS. Arabian Journal of Geosciences, 2014, 7(3): 1249-1259.

[6]

Elmahdy S. I., Mansor S., Huat B. B., . Structural Geologic Control with the Limestone Bedrock Associated with Piling Problems Using Remote Sensing and GIS: A Modified Geomorphological Method. Environmental Earth Sciences, 2012, 66(8): 2185-2195.

[7]

Hall R., Hattum M. W. A. V., Spakman W. Impact of India-Asia Collision on SE Asia: The Record in Borneo. Tectonophysics, 2008, 451(1): 366-389.

[8]

Hasegawa S., Nonomura A., Uchida J. I., . Hazard Mapping of Earthquake-Induced Deep-Seated Catastrophic Landslides along the Median Tectonic Line in Shikoku by Using LiDAR DEM and Airborne Resistivity Data. Engineering Geology for Society and Territory. Springer International Publishing, 2015, 717-720.

[9]

Hsieh Y., Kuo C., Chen Y., . Using Airborne Li- DAR DEM to Determine the Bedrock Incision Rate: An Indirect Dating from Landslide Sliding Surface, Taiwan. Engineering Geology for Society and Territory. Springer International Publishing, 2015, 429-434.

[10]

Lepvrier C., Vuong N. V., Maluski H., . Indosinian Tectonics in Vietnam. Comptes Rendus Geosciences, 2008, 340(2/3): 94-111.

[11]

Lepvrier C., Maluski H., Vuong N. V., . Indosinian NW-Trending Shear Zone within the Truong Son Belt (Vietnam): 40Ar-39Ar Triassic and Cretaceous to Cenozoic Overprints. Tectonophysics, 1997, 283(1): 105-127.

[12]

Li Q., Chen W. J., Wan J. L., . New Evidence of Tectonic Uplift and Transform of Movement Style along Ailao Shan-Red River Shear Zone. Science in China Series D: Earth Sciences, 2001, 44(2): 124-132.

[13]

Lin Z., Kaneda H., Mukoyama S., . Detection of Subtle Tectonic-Geomorphic Features in Densely Forested Mountains by very High-Resolution Airborne LiDAR Survey. Geomorphology, 2013, 182: 104-115.

[14]

Morley C. K., Woganan N., Sankumarn N., . Late Oligocene–Recent Stress Evolution in Rift Basins of Northern and Central Thailand: Implications for Escape Tectonics. Tectonophysics, 2001, 334(2): 115-150.

[15]

Pike R. J., Acevedo W., Thelin G. P. Some Topographic Ingredients of a Geographic Information System. Proceedings, International Geographic Information Systerms Symposium, 15–18 November, Arlington, Virginia (NASA, Washington, D.C.)., 1988, 2: 151-164.

[16]

Prima O. D. A., Yoshida T. Characterization of Volcanic Geomorphology and Geology by Slope and Topographic Openness. Geomorphology, 2010, 118(1): 22-32.

[17]

Qian X., Feng Q. L., Wang Y. J., . Geochronological and Geochemical Constraints on the Mafic Rocks along the Luang Prabang Zone: Carboniferous Back-Arc Setting in Northwest Laos. Lithos, 2016, 245: 60-75.

[18]

Qian X., Feng Q. L., Wang Y. J., . Petrochemistry and Tectonic Setting of the Middle Triassic Arc-Like Volcanic Rocks in the Sayabouli Area, NWLaos. Journal of Earth Science, 2016, 27(3): 365-377.

[19]

Qian X., Feng Q. L., Yang W. Q., . Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications. Journal of Asian Earth Sciences, 2015, 98: 342-357.

[20]

Ren J. S., Jin X. C. New Observations of the Red River Fault. Geological Review, 1996, 42(5): 439-442.

[21]

Smith M. J., Clark C. D. Methods for the Visualization of Digital Elevation Models for Landform Mapping. Earth Surface Processes and Landforms, 2005, 30(7): 885-900.

[22]

Tapponnier P., Xu Z. Q., Roger F., . Geology- Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294(5547): 1671-1677.

[23]

Tapponnier P., Lacassin R., Leloup P. H., . The Ailao Shan/Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 1990, 343(6257): 431-437.

[24]

Tapponnier P., Peltzer G., Le Dain A. Y., . Propagating Extrusion Tectonics in Asia: New insights from Simple Experiments with Plasticine. Geology, 1982, 10 10 611

[25]

Tapponnier P., Molnar P. Slip-Line Field Theory and Large-Scale Continental Tectonics. Nature, 1976, 264(5584): 319-324.

[26]

Wan J. L., Li Q., Chen W. J. Fission Track Evidence of Diachronic Uplift along the Ailaoshan-Red River Left-Lateral Strike-slip Shear Zone. Seismology and Geology, 1997, 19(1): 87-90.

[27]

Wang H., Lin F. C., Li X. Z., . The Division of Tectonic Units and Tectonic Evolution in Laos and Its Adjacent Regions. Geology in China, 2015, 42(1): 71-84.

[28]

Wang P. L., Lo C. H., Chung S. L., . Onset Timing of Left-Lateral Movement along the Ailao Shan-Red River Shear Zone: 40Ar/39Ar Dating Constraint from the Nam Dinh Area, Northeastern Vietnam. Journal of Asian Earth Sciences, 2000, 18(3): 281-292.

[29]

Wu H. W., Zhang L. S., Ji S. C. The Red River- Ailaoshan Fault Zone—A Himalayan Large Sinistral Strike-Slip Intracontinental Shear Zone. Scientia Geologica Sinica, 1989, 1: 1-8.

[30]

Xiang H. F., Guo S. M., Zhang W. X., . Quantitative Study on the Large Scale Dextral Strike-Slip Offset in the Southern Segment of the Red River Fault since Miocene. Seismology and Geology, 2007, 29(1): 52-65.

[31]

Xiang H. F., Han Z. J., Guo S. M., . Processing about Quantitative Study of Large-Scale Strike-slip Movement on Red River Fault Zone. Advance in Earth Sciences, 2004, 19(S1): 56-59.

[32]

Xiang H. F., Wan J. L., Han Z. J., . Geological Analysis and FT Dating of the Large-Scale Risht-Lateral Strike-Slip Movement of the Red River Fault Zone. Science in China Series D: Earth Sciences, 2006, 36(11): 977-987.

[33]

Yang W. Q., Qian X., Feng Q. L., . Zircon U-Pb Geochronological Evidence for the Evolution of the Nan-Uttaradit Suture in Northern Thailand. Journal of Earth Science, 2016, 27(3): 378-390.

[34]

Yang Z. Y., Besse J., Sutheetorn V., . Lower–Middle Jurassic Paleomagnetic Data from the Mae Sot Area (Thailand): Paleogeographic Evolution and Deformation History of Southeastern Asia. Earth and Planetary Science Letters, 1995, 136(3/4): 325-341.

[35]

Yokoyama R., Shirasawa M., Pike R. J. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogrammetric Engineering and Remote Sensing, 2002, 68(3): 257-266.

[36]

Zhang B. L., Liu R. X., Xiang H. F., . FT Dating of Fault Rocks in the Central-Southern Section of the Red River Fault Zone and Its Geological Implications. Seismology and Geology, 2009, 31(1): 44-56.

[37]

Zhang B. L., Liu R. X., Xiang H. F., . Tectonite Features and Stress Field Variations Associated with Fault Motion Transformation in the Central Southern Part of the Red River Fault Zone. Acta Petrologica et Mineralogica, 2008, 27(6): 529-537.

[38]

Zhang J. G., Huangpu G., Xie Y. Q., . Study on the Activity of Red River Fault in Vietnam. Seismology and Geology, 2009, 31(3): 389-400.

[39]

Zhang J. J., Zhong D. L., Sang H. Q., . Structural and Geochronological Evidence for Multiple Episodes of Tertiary Deformation along the Ailaoshan-Red River Shear Zone, Southeastern Asia, Since the Paleocene. Chinese Journal of Geology, 2006, 41(2): 291-310.

[40]

Zhang L. S., Zhong D. L. The Red River Strike-Slip Shear Zone and Cenozoic Tectonics of East Asia Continent. Scientia Geologica Sinica, 1996, 31(4): 327-341.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/