Hydrocode simulation of the impact melt layer distribution underneath Xiuyan Crater, China

Zongyu Yue, Kaichang Di

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 180-186.

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 180-186. DOI: 10.1007/s12583-017-0741-9
Lunar Exploration and Meteorolite Study

Hydrocode simulation of the impact melt layer distribution underneath Xiuyan Crater, China

Author information +
History +

Abstract

In this research, we studied the distribution of impact melt layers underneath Xiuyan crater using hydrocode simulation. The target was modeled by granite based on the rock type distribution around the crater and projector by iron, because most small and isolated terrestrial craters are formed by iron projectile. The simulated crater diameter and depth are 1 710 and 320 m, respectively, which are in good agreement with observations of 1 800 and 307 m (except for the post-impact lacustrine sedimentation). The validated model shows that impact melt materials were first formed along the transient crater floor and wall by highshock pressure, and then refilled inward the crater along with collapse of the crater wall. The final style of impact melt materials is interbedded with shock breccia underneath the crater center, which is verified through two layers in the borehole located in the crater center.

Keywords

Xiuyan crater / numerical simulation / impact melt

Cite this article

Download citation ▾
Zongyu Yue, Kaichang Di. Hydrocode simulation of the impact melt layer distribution underneath Xiuyan Crater, China. Journal of Earth Science, 2017, 28(1): 180‒186 https://doi.org/10.1007/s12583-017-0741-9

References

Amsden A. A., Ruppel H. M., Hirt C. W. SALE: A Simplified ALE Computer Program for Fluid Flow at All Speeds, 1980, 101
CrossRef Google scholar
Chen M. Impact-Derived Features of the Xiuyan Meteorite Crater. Chinese Science Bulletin, 2008, 53(3): 392-395.
CrossRef Google scholar
Chen M., Xiao W. S., Xie X. D., . Xiuyan Crater, China: Impact Origin Confirmed. Chinese Science Bulletin, 2010, 55(17): 1777-1781.
CrossRef Google scholar
Chen M., Koeberl C., Xiao W. S., . Planar Deformation Features in Quartz from Impact-Produced Polymict Breccia of the Xiuyan Crater, China. Meteoritics & Planetary Science, 2011, 46(5): 729-736.
CrossRef Google scholar
Collins G. S., Melosh H. J., Ivanov B. A. Modeling Damage and Deformation in Impact Simulations. Meteoritics & Planetary Science, 2004, 39(2): 217-231.
CrossRef Google scholar
Collins G. S., Melosh H. J., Marcus R. A. Earth Impact Effects Program: A Web-Based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science, 2005, 40(6): 817-840.
CrossRef Google scholar
Grieve R. A. F. The Melt Rocks at Brent Crater, Ontario, Canada. Proceeding of 9th Lunar Planetary Science Conference, 1978, 2579-2608.
Grieve R. A. F., Langenhorst F., Stöffler D. Shock Metamorphism of Quartz in Nature and Experiment: II. Significance in Geoscience. Meteoritics & Planetary Science, 1996, 31(1): 6-35.
CrossRef Google scholar
Ivanov B. A., Deniem D., Neukum G. Implementation of Dynamic Strength Models into 2D Hydrocodes: Applications for Atmospheric Breakup and Impact Cratering. International Journal of Impact Engineering, 1997, 20(1–5): 411-430.
CrossRef Google scholar
Ivanov B. A., Artemieva N. A. Numerical Modeling of the Formation of Large Impact Craters. Geological Society of America Special Paper, 2011, 356: 619-630.
Kinslow R. High-Velocity Impact Phenomena, 1970, New York: Academic Press
Littlefield D. L. ANEOS Extensions for Modeling Hypervelocity Impact. International Journal of Impact Engineering, 1997, 20(6–10): 533-544.
CrossRef Google scholar
Littlefield D. L., Bauman P. T., Molineux A. Analysis of Formation of the Odessa Crater. International Journal of Impact Engineering, 2007, 34(12): 1953-1961.
CrossRef Google scholar
McGlaun J. M., Thompson S. L., Elrick M. G. CTH: A Three-Dimensional Shock Wave Physics Code. International Journal of Impact Engineering, 1990, 10(1–4): 351-360.
CrossRef Google scholar
Melosh H. J. Impact Cratering: A Geologic Process, 1989, New York: Oxford University Press
Melosh H. J. A Hydrocode Equation of State for SiO2. Meteoritics & Planetary Science, 2007, 42(12): 2079-2098.
CrossRef Google scholar
Melosh H. J., Ryan E. V., Asphaug E. Dynamic Fragmentation in Impacts: Hydrocode Simulation of Laboratory Impacts. Journal of Geophysical Research, 1992, 97 E9 14735
CrossRef Google scholar
Ohnaka M. A Shear Failure Strength Law of Rock in the Brittle-Plastic Transition Regime. Geophysical Research Letters, 1995, 22(1): 25-28.
CrossRef Google scholar
O’Keefe J. D., Ahrens T. J. Impact-Induced Melting of Planetary Surfaces. Geological Society of America Special Paper, 1994, 293: 103-109.
CrossRef Google scholar
Osinski G. R., Pierazzo E. Impact Cratering: Processes and Products, 2013, Hoboken, NJ: Wiley-Blackwell
Pierazzo E., Vickery A. M., Melosh H. J. A Reevaluation of Impact Melt Production. Icarus, 1997, 127(2): 408-423.
CrossRef Google scholar
Pierazzo E., Melosh H. J. Melt Production in Oblique Impacts. Icarus, 2000, 145(1): 252-261.
CrossRef Google scholar
Qin G., Lu D., Ou Q., . The Discovery of PGE Anomaly and Platina from Luoquanli Impact Crater, China. Earth Science Frontier, 2001, 8(2): 333-338.
Thompson S. L., Lauson H. S. Improvements in the Chart D Radiation-Hydrodynamic CODE III: Revised Analytic Equations of State. Report SC-RR-71 0714, 1972, 119.
Tonks W. B., Melosh H. J. Magma Ocean Formation Due to Giant Impacts. Journal of Geophysical Research, 1993, 98 5319
CrossRef Google scholar
Wang X. Y., Luo L., Guo H. D., . Cratering Process and Morphological Features of the Xiuyan Impact Crater in Northeast China. Science China: Earth Sciences, 2013, 56(10): 1629-1638.
CrossRef Google scholar
Wünnemann K., Collins G. S., Melosh H. J. A Strain- Based Porosity Model for Use in Hydrocode Simulations of Impacts and Implications for Transient Crater Growth in Porous Targets. Icarus, 2006, 180(2): 514-527.
CrossRef Google scholar
Wünnemann K., Collins G. S., Osinski G. R. Numerical Modelling of Impact Melt Production in Porous Rocks. Earth and Planetary Science Letters, 2008, 269(3/4): 530-539.
CrossRef Google scholar
Yue Z. Y., Di K. C., Zhang P. Theories and Methods for Numerical Simulation of Impact Crater Formation. Earth Science Frontiers, 2012, 19(6): 110-117.
Zhao C. J., Liu M. J., Fan J. C., . High-Resolution Seismic Exploration of Xiuyan Impact Crater Structures. Chinese Journal of Geophysics, 2011, 54(6): 1559-1565.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/