A high temperature and high pressure experimental study on re-bearing capability of sulfide

Yingying Liu , Zhilong Huang , Chengming Zhu

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 78 -91.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (1) : 78 -91. DOI: 10.1007/s12583-017-0739-3
Experimental Geochemistry

A high temperature and high pressure experimental study on re-bearing capability of sulfide

Author information +
History +
PDF

Abstract

High temperature (1 270–1 550 ºC) and high pressure (1.0 GPa) experimental studies on Re-bearing capabilities of pyrite, galena and sphalerite from typical Pb-Zn ore deposits were performed on a six-anvil apparatus. We observed microstructures of the quenched sulfides using scanning electron microscope (SEM) and analyzed compositions of the run products using both energy disperse spectroscopy (EDS) and electron probe microanalyzer (EPMA). The results show that pyrite melt can dissolve much more metallic Re than galena and sphalerite melts, forming scattered acicular ReS2 in the quenched matrix of pyrrhotite (Fe1-xS). The quenched matrixes of Fe1-xS, PbS and ZnS generally contain less than 1.0 wt.% of Re and their Re-bearing capabilities seem to range as Fe1-xS>PbS>ZnS. However, Re partition coefficients between them are difficult to estimate, because Re distribution is inhomogeneous in the quenched sulfide matrixes.

Keywords

pyrite / galena / sphalerite / high P-T experiment / Re-bearing capability

Cite this article

Download citation ▾
Yingying Liu, Zhilong Huang, Chengming Zhu. A high temperature and high pressure experimental study on re-bearing capability of sulfide. Journal of Earth Science, 2017, 28(1): 78-91 DOI:10.1007/s12583-017-0739-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arne D. C., Bierlein F. P., Morgan J. W., . Re-Os Dating of Sulfides Associated with Gold Mineralization in Central Victoria, Australia. Economic Geology, 2001, 96(6): 1455-1459.

[2]

Barra F., Ruiz J., Mathur R., . A Re-Os Study of Sulfide Minerals from the Bagdad Porphyry Cu-Mo Deposit, Northern Arizona, USA. Mineralium Deposita, 2003, 38(5): 585-596.

[3]

Barra F., Ruiz J., Valencia V. A., . Laramide Porphyry Cu-Mo Mineralization in Northern Mexico: Age Constraints from Re-Os Geochronology in Molybdenite. Economic Geology, 2005, 100(8): 1605-1616.

[4]

Bennett N. R., Brenan J. M. Controls on the Solubility of Rhenium in Silicate Melt: Implications for the Osmium Isotopic Composition of Earth’s Mantle. Earth and Planetary Science Letters, 2013, 361: 320-332.

[5]

Berzina A. N., Sotnikov V. I., Economou-Eliopoulos M., . Distribution of Rhenium in Molybdenite from Porphyry Cu-Mo and Mo-Cu Deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 2005, 26(1/2): 91-113.

[6]

Brenan J. M. Re-Os Fractionation in Magmatic Sulfide Melt by Monosulfide Solid Solution. Earth and Planetary Science Letters, 2002, 199(3/4): 257-268.

[7]

Brenan J. M. Re-Os Fractionation by Sulfide Melt-Silicate Melt Partitioning: A New Spin. Chemical Geology, 2008, 248(3/4): 140-165.

[8]

Brenan J. M., Cherniak D. J., Rose L. A. Diffusion of Osmium in Pyrrhotite and Pyrite: Implications for Closure of the Re-Os Isotopic System. Earth and Planetary Science Letters, 2000, 180(3/4): 399-413.

[9]

Buono S. S., Dasgupta R., Lee C. A., . Siderophile Element Partitioning between Cohenite and Liquid in the Fe-Ni-S-C System and Implications for Geochemistry of Planetary Cores and Mantles. Geochimica et Cosmochimica Acta, 2013, 120: 239-250.

[10]

Chen W. T., Zhou M. F. Paragenesis, Stable Isotopes, and Molybdenite Re-Os Isotope Age of the Lala Iron-Copper Deposit, Southwest China. Economic Geology, 2012, 107(3): 459-480.

[11]

Chen Z. H., Wang D. H., Qu W. J., . Geological Characteristics and Mineralization Age of the Taoxikeng Tungsten Deposit in Chongyi County, Southern Jiangxi Province, China. Geological Bulletin of China, 2006, 25(4): 496-501.

[12]

Dai J. Z., Mao J. W., Zhao C. S., . New U-Pb and Re-Os Age Data and the Geodynamic Setting of the Xiaojiayingzi Mo (Fe) Deposit, Western Liaoning Province, Northeastern China. Ore Geology Reviews, 2009, 35(2): 235-244.

[13]

Ertel W., O’Neill H. S., Sylvester P. J. The Solubility of Rhenium in Silicate Melts: Implications for the Geochemical Properties of Rhenium at High Temperatures. Geochemica et Cosmochimica Acta, 2001, 65(13): 2161-2170.

[14]

Esser B. K., Turekian K. K. The Osmium Isotopic Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 1993, 57(13): 3093-3104.

[15]

Feng C. Y., Qu W. J., Zhang D. Q., . Re-Os Dating of Pyrite from the Tuolugou Stratabound Co(Au) Deposit, Eastern Kunlun Orogenic Belt, Northwestern China. Ore Geology Reviews, 2009, 36(1–3): 213-220.

[16]

Feng C. Y., Zeng Z. L., Zhang D. Q., . SHRIMP Zircon U-Pb and Molybdenite Re-Os Isotopic Dating of the Tungsten Deposits in the Tianmenshan-Hongtaoling W-Sn Orefield, Southern Jiangxi Province, China, and Geological Implications. Ore Geology Reviews, 2011, 43(1): 8-25.

[17]

Fonseca R. O. C., Campbell I. H., O’Neill H. S. C., . Solubility of Pt in Sulphide Mattes: Implications for the Genesis of PGE-Rich Horizons in Layered Intrusions. Geochimica et Cosmochimica Acta, 2009, 73(19): 5764-5777.

[18]

Fonseca R. O. C., Mallmann G., O’Neill H. S. C., . How Chalcophile is Rhenium? An Experimental Study of the Solubility of Re in Sulphide Mattes. Earth and Planetary Science Letters, 2007, 260(3/4): 537-548.

[19]

Fonseca R. O. C., Mallmann G., O’Neill H. S. C., . Solubility of Os and Ir in Sulfide Melt: Implications for Re/Os Fractionation during Mantle Melting. Earth and Planetary Science Letters, 2011, 311(3/4): 339-350.

[20]

Freydier C., Ruiz J., Chesley J., . Re-Os Isotope Systematics of Sulfides from Felsic Igneous Rocks: Application to Base Metal Porphyry Mineralization in Chile. Geology, 1997, 25 9 775

[21]

Frost B. R., Mavrogenes J. A., Tomkins A. G. Partial Melting of Sulfide Ore Deposits during Medium- and High-Grade Metamorphism. The Canadian Mineralogist, 2002, 40(1): 1-18.

[22]

Fu H. F., Zhu C. M. High Pressure Fusion Curve of Alloys Ni70Mn30, Ni40Mn30Fe30 and Ni70Mn25Co5 Used in Synthesizing Diamonds. Journal of Chinese Silicate Solicate, 1985, 13: 381-384.

[23]

Fu Y., Dong L., Li C., . New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 2016, 27(2): 271-281.

[24]

Gao Y., Li Y. F., Guo B. J., . Geological Characteristics and Molybdenite Re-Os Isotopic Dating of Qianfanling Quartz-Vein Mo Deposit in Songxian County, Western Henan Province. Acta Petrologica Sinica, 2010, 26(3): 757-767.

[25]

Hu K. M., Tang Z. C., Meng X. S., . Chronology of Petrogenesis and Mineralization of Datongkeng Porphyry W-Mo Deposit in West Zhejiang. Earth Science, 2016, 41(9): 1435-1450.

[26]

Huang X. W., Qi L., Gao J. F., . First Reliable Re-Os Ages of Pyrite and Stable Isotope Compositions of Fe(-Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NWChina. Resource Geology, 2013, 63(2): 166-187.

[27]

Huang X. W., Zhao X. F., Qi L. Re-Os and S Isotopic Constraints on the Origins of Two Mineralization Events at the Tangdan Sedimentary Rock-Hosted Stratiform Cu Deposit, SWChina. Chemical Geology, 2013, 347: 9-19.

[28]

Huang X. W., Qi L., Wang Y. C., . Re-Os Dating of Magnetite from the Shaquanzi Fe-Cu Deposit, Eastern Tianshan, NWChina. Science China: Earth Sciences, 2014, 57(2): 267-277.

[29]

Huston D. L., Stevens B., Southgate P. N., . Australian Zn-Pb-Ag Ore-Forming Systems: A Review and Analysis. Economic Geology, 2006, 101(6): 1117-1157.

[30]

Kelley K. D., Slack J. F., Selby D., . Geochemistry and Geochronology of Carbonate-Hosted Base Metal Deposits in the Southern Brooks Range, 2010, Alaska: Temporal Link to VMS Deposits and Metallogenic Implications. James Cook Univ., Townsville, 454-456.

[31]

Kirk J., Ruiz J., Chesley J., . A Detrital Model for the Origin of Gold and Sulfides in the Witwatersrand Basin Based on Re-Os Isotopes. Geochimica et Cosmochimica Acta, 2001, 65(13): 2149-2159.

[32]

Lentz D. R., Suzuki K. A Low F Pegmatite-Related Mo Skarn from the Southwestern Grenville Province, Ontario, Canada: Phase Equilibria and Petrogenetic Implications. Economic Geology, 2000, 95(6): 1319-1337.

[33]

Levresse G., Cheilletz A., Gasquet D., . Osmium, Sulphur, and Helium Isotopic Results from the Giant Neoproterozoic Epithermal Imiter Silver Deposit, Morocco: Evidence for a Mantle Source. Chemical Geology, 2004, 207(1/2): 59-79.

[34]

Li N., Chen Y. J., Santosh M., . The 1.85 Ga Mo Mineralization in the Xiong’er Terrane, China: Implications for Metallogeny Associated with Assembly of the Columbia Supercontinent. Precambrian Research, 2011, 186(1–4): 220-232.

[35]

Li W. C., Zeng P. S., Hou Z. Q., . The Pulang Porphyry Copper Deposit and Associated Felsic Intrusions in Yunnan Province, Southwest China. Economic Geology, 2011, 106(1): 79-92.

[36]

Liu C., Deng J. F., Kong W. Q., . LA-ICP-MS Zircon U-Pb Geochronology of the Fine-Grained Granite and Molybdenite Re-Os Dating in the Wurinitu Molybdenum Deposit, Inner Mongolia, China. Acta Geologica Sinica—English Edition, 2011, 85(5): 1057-1066.

[37]

Liu X. F., Yuan S. D., Wu S. H. Re-Os Dating of the Molybdenite from the Jinchuantang Tin-Bismuth Deposit in Hunan Province and Its Geological Significance. Acta Petrologica Sinica, 2012, 28(1): 39-51.

[38]

Liu Y. Y., Qi L., Gao J. F., . Re-Os Dating of Galena and Sphalerite from Lead-Zinc Sulfide Deposits in Yunnan Province, SW China. Journal of Earth Science, 2015, 25(3): 343-351.

[39]

L. S., Mao J. W., Li H. B., . Pyrrhotite Re-Os and SHRIMP Zircon U-Pb Dating of the Hongqiling Ni-Cu Sulfide Deposits in Northeast China. Ore Geology Reviews, 2011, 43(1): 106-119.

[40]

Lu Y. F., Ma L. Y., Qu W. J., . U-Pb and Re-Os Isotope Geochronology of Baoshan Cu-Mo Polymetallic Ore Deposit in Hunan Province. Acta Petrologica Sinica, 2006, 22(10): 2483-2492.

[41]

Mallmann G., O’Neill H. S. C. The Effect of Oxygen Fugacity on the Partitioning of Re between Crystals and Silicate Melt during Mantle Melting. Geochimica et Cosmochimica Acta, 2007, 71(11): 2837-2857.

[42]

Mao J. W., Zhang Z. H., Zhang Z. C., . Re-Os Age Dating of Molybdenites in the Xiaoliugou Tungsten Deposit in the Northern Qilian Mountains and Its Significance. Geological Review, 1999, 45(4): 412-417.

[43]

Mathur R., Marschik R., Ruiz J., . Age of Mineralization of the Candelaria Fe Oxide Cu-Au Deposit and the Origin of the Chilean Iron Belt, Based on Re-Os Isotopes. Economic Geology, 2002, 97(1): 59-71.

[44]

Mathur R., Ruiz J., Titley S., . Different Crustal Sources for Au-Rich and Au-Poor Ores of the Grasberg Cu-Au Porphyry Deposit. Earth and Planetary Science Letters, 2000, 183(1/2): 7-14.

[45]

Mathur R., Ruiz J., Tornos F. Age and Sources of the Ore at Tharsis and Rio Tinto, Iberian Pyrite Belt, from Re-Os Isotopes. Mineralium Deposita, 1999, 34(8): 790-793.

[46]

Mavrogenes J. A., MacIntosh I. W., Ellis D. J. Partial Melting of the Broken Hill Galena-Sphalerite Ore: Experimental Studies in the System PbS-FeS-ZnS-(Ag2S). Economic Geology, 2001, 96(1): 205-210.

[47]

Meisel T., Moser J., Wegscheider W. Recognizing Heterogeneous Distribution of Platinum Group Elements (PGE) in Geological Materials by Means of the Re-Os Isotope System. Fresenius Journal of Analytical Chemistry, 2001, 370(5): 566-572.

[48]

Meisel T., Walker R. J., Morgan J. W. The Osmium Isotopic Composition of the Earth’s Primitive Upper Mantle. Nature, 1996, 383(6600): 517-520.

[49]

Melfos V., Voudouris P., Arikas K., . Rhenium-Rich Molybdenites in Thracian Porphyry Cu±Mo Occurrences, NE Greece. Bulletin of the Geological Society of Greece, 2001, 34: 1015-1022.

[50]

Morelli R. M., Bell C. C., Creaser R. A., . Constraints on the Genesis of Gold Mineralization at the Homestake Gold Deposit, Black Hills, South Dakota from Rhenium-Osmium Sulfide Geochronology. Mineralium Deposita, 2010, 45(5): 461-480.

[51]

Morelli R. M., Creaser R. A., Selby D., . Re-Os Sulfide Geochronology of the Red Dog Sediment-Hosted Zn-Pb-Ag Deposit, Brooks Range, Alaska. Economic Geology, 2004, 99(7): 1569-1576.

[52]

Morelli R. M., Creaser R. A., Selby D., . Rhenium-Osmium Geochronology of Arsenopyrite in Meguma Group Gold Deposits, Meguma Terrane, Nova Scotia, Canada: Evidence for Multiple Gold-Mineralizing Events. Economic Geology, 2005, 100(6): 1229-1242.

[53]

Nozaki T., Kato Y., Suzuki K. Re-Os Geochronology of the Iimori Besshi-Type Massive Sulfide Deposit in the Sanbagawa Metamorphic Belt, Japan. Geochimica et Cosmochimica Acta, 2010, 74(15): 4322-4331.

[54]

Pruseth K. L., Jehan N., Sahu P., . The Possibility of a ZnS-Bearing Sulfide Melt at 600 ºC: Evidence from the Rajpura-Dariba Deposit, India, Supported by Laboratory Melting Experiment. Ore Geology Reviews, 2014, 60: 50-59.

[55]

Qi L., Gao J. F., Zhou M. F., . The Design of Re-Usable Carius Tubes for the Determination of Rhenium, Osmium and Platinum-Group Elements in Geological Samples. Geostandards and Geoanalytical Research, 2013, 37(3): 345-351.

[56]

Qi L., Zhou M. F., Gao J. F. An Improved Carius Tube Technique for Determination of Low Concentrations of Re and Os in Pyrites. Journal of Analytical Atomic Spectrometry, 2010, 25 4 585

[57]

Reisberg L., Meisel T. The Re-Os Isotopic System: A Review of Analytical Techniques. Geostandards and Geoanalytical Research, 2002, 26(3): 249-267.

[58]

Righter K., Chesley J. T., Geist D., . Behavior of Re during Magma Fractionation: An Example from Volcan Alcedo, Galapagos. Journal of Petrology, 1998, 39(4): 785-795.

[59]

Sattari P., Brenan J. M., Horn I., . Experimental Constraints on the Sulfide- and Chromite-Silicate Melt Partitioning Behavior of Rhenium and Platinum-Group Elements. Economic Geology, 2002, 97(2): 385-398.

[60]

Selby D., Creaser R. A. Macroscale NTIMS and Microscale LA-MC-ICP-MS Re-Os Isotopic Analysis of Molybdnite: Testing Spatial Restrictions for Reliable Re-Os Age Determinations, and Implications for the Decoupling of Re and Os within Molybdenite. Geochimica et Cosmochimica Acta, 2004, 68(19): 3897-3908.

[61]

Selby D., Kelley K. D., Hitzman M. W., . Re-Os Sulfide (Bornite, Chalcopyrite, and Pyrite) Systematics of the Carbonate-Hosted Copper Deposits at Ruby Creek, Southern Brooks Range, Alaska. Economic Geology, 2009, 104(3): 437-444.

[62]

Sharp W. E. Melting Curves of Sphalerite, Galena, and Pyrrhotite and the Decomposition Curve of Pyrite between 30 and 65 Kilobars. Journal of Geophysical Research, 1969, 74(6): 1645-1652.

[63]

Si R. J. Ore Deposit Geochemistry of the Fule Dispersed Element-Polymetallic Deposit, Yunnan Province, 2006, Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-121.

[64]

Song G. X., Qin K. Z., Li G. M., . Geochronologic and Isotope Geochemical Constraints on Magmatism and Associated W-Mo Mineralization of the Jitoushan W-Mo Deposit, Middle–Lower Yangtze Valley. International Geology Review, 2012, 54(13): 1532-1547.

[65]

Spry P. G., Mathur R. D., Bonsall T. A., . Re-Os Isotope Evidence for Mixed Source Components in Carbonate-Replacement Pb-Zn-Ag Deposits in the Lavrion District, Attica, Greece. Mineralogy and Petrology, 2014, 108(4): 503-513.

[66]

Spry P. G., Plimer I. R., Teale G. S. Did the Giant Broken Hill (Australia) Zn-Pb-Ag Deposit Melt?. Ore Geology Reviews, 2008, 34(3): 223-241.

[67]

Stein H. J. Low-Rhenium Molybdenite by Metamorphism in Northern Sweden: Recognition, Genesis, and Global Implications. Lithos, 2006, 87(3/4): 300-327.

[68]

Stein H. J., Markey R. J., Morgan J. W., . The Remarkable Re-Os Chronometer in Molybdenite: How and why It Works. Terra Nova, 2001, 13(6): 479-486.

[69]

Stein H. J., Morgan J. W., Schersten A. Re-Os Dating of Low-Level Highly Radiogenic (LLHR) Sulfides: The Harnas Gold Deposit, Southwest Sweden, Records Continental- Scale Tectonic Events. Economic Geology, 2000, 95(8): 1657-1671.

[70]

Stevens G., Prinz S., Rozendaal A. Partial Melting of the Assemblage Sphalerite+Galena+Pyrrhotite+Chalcopyrite+ Sulfur: Implications for High-Grade Metamorphosed Massive Sulfide Deposits. Economic Geology, 2005, 100(4): 781-786.

[71]

Suzuki K., Shimizu H., Masuda A. Re-Os Dating of Molybdenites from Ore Deposits in Japan: Implication for the Closure Temperature of the Re-Os System for Molybdenite and the Cooling History of Molybdenum Ore Deposits. Geochimica et Cosmochimica Acta, 1996, 60(16): 3151-3159.

[72]

Taghipour N., Aftabi A., Mathur R. Geology and Re-Os Geochronology of Mineralization of the Miduk Porphyry Copper Deposit, Iran. Resource Geology, 2008, 58(2): 143-160.

[73]

Wang L., Hu M. A., Yang Z., . U-Pb and Re-Os Geochronology and Geodynamic Setting of the Dabaoshan Polymetallic Deposit, Northern Guangdong Province, South China. Ore Geology Reviews, 2011, 43(1): 40-49.

[74]

Xie G. Q., Mao J. W., Zhao H. J., . Timing of Skarn Deposit Formation of the Tonglushan Ore District, Southeastern Hubei Province, Middle–Lower Yangtze River Valley Metallogenic Belt and its Implications. Ore Geology Reviews, 2011, 43(1): 62-77.

[75]

Xiong Y. L., Wood S. A. Experimental Determination of the Solubility of ReO2 and the Dominant Oxidation State of Rhenium in Hydrothermal Solutions. Chemical Geology, 1999, 158(3/4): 245-256.

[76]

Xiong Y. L., Wood S. A. Experimental Determination of the Hydrothermal Solubility of ReS2 and the Re-ReO2 Buffer Assemblage and Transport of Rhenium under Supercritical Conditions. Geochemical Transactions, 2002, 3(1): 1-10.

[77]

Xiong Y., Wood S., Kruszewski J. Hydrothermal Transport and Deposition of Rhenium under Subcritical Conditions Revisited. Economic Geology, 2006, 101(2): 471-478.

[78]

Xiong Y., Wood S. A. Hydrothermal Transport and Deposition of Rhenium under Subcritical Conditions (up to 200 ºC) in Light of Experimental Studies. Economic Geology, 2001, 96(6): 1429-1444.

[79]

Ye L., Gao W., Yang Y. L. Trace Elements in Sphalerite in Laochang Pb-Zn Polymetallic Deposit, Lancang, Yunnan Province. Acta Petrologica Sinica, 2012, 28(5): 1362-1372.

[80]

Yu G., Yang G., Chen J. F., . Re-Os Dating of Gold-Bearing Arsenopyrite of the Maoling Gold Deposit, Liaoning Province, Northeast China and Its Geological Significance. Chinese Science Bulletin, 2005, 50 14 1509

[81]

Zeng P. S., Hou Z. Q., Wang H. P., . Re-Os Dating of the Pulang Porphyry Copper Deposit in Zhongdian, NW Yunnan, and Its Geological Significance. Acta Geologica Sinica—English Edition, 2004, 78: 604-609.

[82]

Zeng Q. D., Chu S. X., Liu J. M., . Mineralization, Alteration, Structure, and Re-Os Age of the Lanjiagou Porphyry Mo Deposit, North China Craton. International Geology Review, 2012, 54(10): 1145-1160.

[83]

Zhang F., Liu S. W., Li Q. G., . Re-Os and U-Pb Geochronology of the Erlihe Pb-Zn Deposit, Qinling Orogenic Belt, Central China, and Constraints on Its Deposit Genesis. Acta Geologica Sinica—English Edition, 2011, 85(3): 673-682.

[84]

Zhang J. W., Zhu C. M., Luo T. Y., . Sn-Bearing Capability Studies of Basaltic and Granitic Magma from the Gejiu tin Deposit: Evidence from High Temperature and High Pressure Petrological Experimentation. Acta Mineralogica Sinica, 2015, 35(2): 159-166.

[85]

Zhu Z. M., Sun Y. L. Direct Re-Os Dating of Chalcopyrite from the Lala IOCG Deposit in the Kangdian Copper Belt, China. Economic Geology, 2013, 108(4): 871-882.

[86]

Zimmerman A., Stein H. J., Hannah J. L., . Tectonic Configuration of the Apuseni-Banat-Timok-Srednogorie Belt, Balkans-South Carpathians, Constrained by High Precision Re-Os Molybdenite Ages. Mineralium Deposita, 2008, 43(1): 1-21.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/