PDF
Abstract
Thermal maturation and petroleum generation modeling of shales is essential for successful exploration and exploitation of conventional and unconventional oil and gas plays. For basin-wide unconventional resource plays such modeling, when well calibrated with direct maturity measurements from wells, can characterize and locate production sweet spots for oil, wet gas and dry gas. The transformation of kerogen to petroleum is associated with many chemical reactions, but models typically focus on first-order reactions with rates determined by the Arrhenius Equation. A misconception has been perpetuated for many years that accurate thermal maturity modeling of vitrinite reflectance using the Arrhenius Equation and a single activation energy, to derive a time-temperature index (ΣTTIARR), as proposed by Wood (1988), is flawed. This claim was initially made by Sweeney and Burnham (1990) in promoting their “EasyRo” method, and repeated by others. This paper demonstrates through detailed multi-dimensional burial and thermal modeling and direct comparison of the ΣTTIARR and “EasyRo” methods that this is not the case. The ΣTTIARR method not only provides a very useful and sensitive maturity index, it can reproduce the calculated vitrinite reflectance values derived from models based on multiple activation energies (e.g., “EasyRo”). Through simple expressions the ΣTTIARR method can also provide oil and gas transformation factors that can be flexibly scaled and calibrated to match the oil, wet gas and dry gas generation windows. This is achieved in a more-computationally-efficient, flexible and transparent way by the ΣTTIARR method than the “EasyRo” method. Analysis indicates that the “EasyRo” method, using twenty activation energies and a constant frequency factor, generates reaction rates and transformation factors that do not realistically model observed kerogen behaviour and transformation factors over geologic time scales.
Keywords
time-temperature maturity index
/
kerogen activation energies
/
kerogen reaction rates
/
multi-dimensional thermal maturity models
/
petroleum generation versus vitrinite reflectance
/
burial/thermal history analysis
Cite this article
Download citation ▾
David A. Wood.
Re-establishing the merits of thermal maturity and petroleum generation multi-dimensional modeling with an Arrhenius Equation using a single activation energy.
Journal of Earth Science, 2017, 28(5): 804-834 DOI:10.1007/s12583-017-0735-7
| [1] |
Abbott G. D., Lewis C. A., Maxwell J. R. The Kinetics of Specific Organic Reactions in the Zone of Catagenesis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1985, 315(1531): 107-122.
|
| [2] |
Arrhenius S. Über Die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker Durch Säuren. Z. Phys. Chem., 1889, 4: 226-248.
|
| [3] |
Behar F., Vandenbroucke M., Tang Y., . Thermal Cracking of Kerogen in Open and Closed Systems: Determination of Kinetic Parameters and Stoichiometric Coefficients for Oil and Gas Generation. Organic Geochemistry, 1997, 26(5/6): 321-339.
|
| [4] |
Braun R. L., Burnham A. K. Analysis of Chemical Reaction Kinetics Using a Distribution of Activation Energies and Simpler Models. Energy & Fuels, 1987, 1(2): 153-161.
|
| [5] |
Burnham A. K., Sweeney J. J. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 1989, 53(10): 2649-2657.
|
| [6] |
Burnham A. K. Comment on “Experiments on the Role of Water in Petroleum Formation” by M. D. Lewan. Geochimica et Cosmochimica Acta, 1998, 62: 2207-2210.
|
| [7] |
Burnham A. K. Global Chemical Kinetics of Fossil Fuels: How to Model Maturation and Pyrolysis, 2017, Amsterdam: Springer, 330
|
| [8] |
Chen Z. H., Liu X. J., Guo Q. L., . Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 2017, 194: 91-101.
|
| [9] |
Cornford C. Glennie K. W. Source Rocks and Hydrocarbons of the North Sea: Chapter 11. Petroleum Geology of the North Sea: Basic Concepts and Recent Advances, 2009, 376-462.
|
| [10] |
Dieckmann V. Modelling Petroleum Formation from Heterogeneous Source Rocks: The Influence of Frequency Factors on Activation Energy Distribution and Geological Prediction. Marine and Petroleum Geology, 2005, 22(3): 375-390.
|
| [11] |
Ducros M. Source Rock Kinetics: Goal and Perspectives, 2016.
|
| [12] |
Eglinton T. I., Sinninghe Damsté J. S., Kohnen M. E. L., . Rapid Estimation of the Organic Sulphur Content of Kerogens, Coals and Asphaltenes by Pyrolysis-Gas Chromatography. Fuel, 1990, 69(11): 1394-1404.
|
| [13] |
Espitalié J. Burris J. Use of T max as a Maturation Index for Different Types of Organic Matter. Comparison with Vitrinite Reflectance: 1st IFP Exploration Research Conference, Thermal modeling in Sedimentary Basins: Paris, June 3–7, 1985, Carcans, France, 1986, 475-496.
|
| [14] |
Espitalié J., Ungerer P., Irwin I., . Primary Cracking of Kerogens. Organic Geochemistry, 1988, 13(4/5/6): 893-899.
|
| [15] |
Gorbachev V. M. A Solution of the Exponential Integral in the Nonisothermal Kinetics for Linear Heating. Journal of Thermal Analysis, 1975, 8 349350.
|
| [16] |
Hackley P. C., Araujo C. V., Borrego A. G., . Standardization of Reflectance Measurements in Dispersed Organic Matter: Results of an Exercise to Improve Inter Laboratory Agreement. Mar. Pet. Geol., 2015, 59: 22-34.
|
| [17] |
Hackley P. C., Cardott B. J. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 2016, 163: 8-51.
|
| [18] |
Hartkopf-Fröder C., Königshof P., Littke R., . Optical Thermal Maturity Parameters and Organic Geochemical Alteration at Low Grade Diagenesis to Anchimetamorphism: A Review. International Journal of Coal Geology, 2015, 150/151: 74-119.
|
| [19] |
He S., Middleton M. Heat Flow and Thermal Maturity Modelling in the Northern Carnarvon Basin, North West Shelf, Australia. Marine and Petroleum Geology, 2002, 19(9): 1073-1088.
|
| [20] |
Ho T. T. Y., Jensen R. P., Sahai S. K., . Comparative Studies of Pre-and Post-Drilling Modelled Thermal Conductivity and Maturity Data with Post-Drilling Results: Implications for Basin Modelling and Hydrocarbon Exploration. In: Duppenbecker, S. J., Iliffe, J. E., eds., Basin Modelling: Practice and Progress. Geological Society, London, Special Publications, 1998, 141(1): 187-208.
|
| [21] |
Hood A., Gutjahr C. C. M., Heacock R. L. Organic Metamorphism and the Generation of Petroleum. AAPG Bulletin, 1975, 59: 986-996.
|
| [22] |
Huang W.-L. Experimental Study of Vitrinite Maturation: Effects of Temperature, Time, Pressure, Water, and Hydrogen Index. Organic Geochemistry, 1996, 24(2): 233-241.
|
| [23] |
Jarvie D. M. Factors Affecting Rock-Eval Derived Kinetic Parameters. Chemical Geology, 1991, 93(1/2): 79-99.
|
| [24] |
Jarvie D. M., Lundell L. L. Isaacs C. M., Rullkötter J. Kerogen Type and Thermal Transformation of Organic Matter in the Miocene Monterey Formation. The Monterey Formation: From Rocks to Molecules, 2001, New York: Columbia University Press, 269-295.
|
| [25] |
Jarvie D. M. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta: Alago Special Publication, 2014, 12(4): 307-325.
|
| [26] |
Klomp U. C., Wright P. A. A New Method for the Measurement of Kinetic Parameters of Hydrocarbon Generation from Source Rocks. Organic Geochemistry, 1989, 16(1/2/3): 49-60.
|
| [27] |
Larter S. R. Some Pragmatic Perspectives in Source Rock Geochemistry. Marine and Petroleum Geology, 1988, 5(3): 194-204.
|
| [28] |
Larter S. R. Chemical Modelling of Vitrinite Reflectance Evolution. Geologische Rundschau, 1989, 78(1): 349-359.
|
| [29] |
Lehne E., Dieckmann V. The Significance of Kinetic Parameters and Structural Markers in Source Rock Asphaltenes, Reservoir Asphaltenes and Related Source Rock Kerogens, the Duvernay Formation (WCSB). Fuel, 2007, 86(5/6): 887-901.
|
| [30] |
Lerche I., Yarzab R. E., Kendall G. G., . Determination of Paleoheat Flux from Vitrinite Reflectance Data: Discussion. AAPG Bulletin, 1984, 69: 1704-1717.
|
| [31] |
Lewan M. D., Spiro B., Illich H., . Evaluation of Petroleum Generation by Hydrous Pyrolysis Experimentation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1985, 315(1531): 123-134.
|
| [32] |
Lewan M. D. Experiments on the Role of Water in Petroleum Formation. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723.
|
| [33] |
Lewan M. D., Ruble T. E. Comparison of Petroleum Generation Kinetics by Isothermal Hydrous and Nonisothermal Open-System Pyrolysis. Organic Geochemistry, 2002, 33(12): 1457-1475.
|
| [34] |
Liao L. L., Wang Y. P., Chen C. S., . Kinetic Study of Marine and Lacustrine Shale Grains Using Rock-Eval Pyrolysis: Implications to Hydrocarbon Generation, Retention and Expulsion. Marine and Petroleum Geology, 2017.
|
| [35] |
Lopatin N. V. Temperature and Geologic Time as Factors in Coalification (in Russian). Akademiya Nauk SSSR Izvestiya, Seriya Geologicheskaya, 1971, 3: 95-106.
|
| [36] |
Luo X., Gong S., Sun F. J., . Effect of Volcanic Activity on Hydrocarbon Generation: Examples in Songliao, Qinshui, and Bohai Bay Basins in China. Journal of Natural Gas Science and Engineering, 2017, 38: 218-234.
|
| [37] |
Ma A. L. Kinetics of Oil-Cracking for Different Types of Marine Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 2016, 1(1): 35-43.
|
| [38] |
Mackenzie A. S., Beaumont C., McKenzie D. P. Estimation of the Kinetics of Geochemical Reactions with Geophysical Models of Sedimentary Basins and Applications. Organic Geochemistry, 1984, 6: 875-884.
|
| [39] |
Mackenzie A. S., McKenzie D. P. Isomerization and Aromatization of Hydrocarbons in Sedimentary Basins Formed by Extension. Geological Magazine, 1983, 120 5 417
|
| [40] |
Marzi R., Rullkötter J., Perriman W. S. Application of the Change of Sterane Isomer Ratios to the Reconstruction of Geothermal Histories: Implications of the Results of Hydrous Pyrolysis Experiments. Organic Geochemistry, 1990, 16(1/2/3): 91-102.
|
| [41] |
Mohamed A. Y., Whiteman A. J., Archer S. G., . Thermal Modelling of the Melut Basin Sudan and South Sudan: Implications for Hydrocarbon Generation and Migration. Marine and Petroleum Geology, 2016, 77: 746-762.
|
| [42] |
Nielsen S. B., Barth T. Vitrinite Reflectance: Comments on “A Chemical Kinetic Model of Vitrinite Maturation and Reflectance” by Alan K. Burnham and Jerry J. Sweeney. Geochimica et Cosmochimica Acta, 1991, 55(2): 639-641.
|
| [43] |
Nielsen S. B., Barth T. An Application of Least-Squares Inverse Analysis in Kinetic Interpretations of Hydrous Pyrolysis Experiments. Mathematical Geology, 1991, 23(4): 565-582.
|
| [44] |
Nielsen S. B., Dahl B. Confidence Limits on Kinetic Models of Primary Cracking and Implications for the Modelling of Hydrocarbon Generation. Marine and Petroleum Geology, 1991, 8(4): 483-492.
|
| [45] |
Nordeng S. H. Evaluating Source Rock Maturity Using Multi-Sample Kinetic Parameters from the Bakken Formation (Miss.–Dev.), Williston Basin, ND, 2013.
|
| [46] |
Nunn J. A., Sleep N. H., Moore W. E. Thermal Subsidence and Generation of Hydrocarbons in Michigan Basin. AAPG Bulletin, 1984, 68: 296-315.
|
| [47] |
Nunn J. A. Burial and Thermal History of the Haynesville Shale: Implications for Overpressure, Gas Generation, and Natural Hydro Fracture. Gulf Coast Association of Geological Societies (GCAGS) Journal, 2012, 1: 81-96.
|
| [48] |
Orr W. L. Leythaeuser D., Rullkotter J. Kerogen/Asphaltene/Sulfur Relationships in Sulfur-Rich Monterey Oils. Petroleum Geochemistry. Advances in Organic Geochemistry 1985, Part I, 1986, 499-516.
|
| [49] |
Pepper A. S., Corvi P. J. Simple Kinetic Models of Petroleum Formation. Part I: Oil and Gas Generation from Kerogen. Marine and Petroleum Geology, 1995, 12(3): 291-319.
|
| [50] |
Peters K. E. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 1986, 70: 318-329.
|
| [51] |
Peters K. E., Burnham A. K., Walters C. C. Petroleum Generation Kinetics: Single versus Multiple Heating-Ramp Open-System Pyrolysis. AAPG Bulletin, 2015, 99(4): 591-616.
|
| [52] |
Pigott J. D. Assessing Source Rock Maturity in Frontier Basins: Importance of Time, Temperature, and Tectonics. AAPG Bulletin, 1985, 69: 1269-1274.
|
| [53] |
Reynolds J. G., Burnham A. K., Mitchell T. O. Kinetic Analysis of California Petroleum Source Rocks by Programmed Temperature Micropyrolysis. Organic Geochemistry, 1995, 23(2): 109-120.
|
| [54] |
Ritter U., Myhr M. B., Vinge T., . Experimental Heating and Kinetic Models of Source Rocks: Comparison of Different Methods. Organic Geochemistry, 1995, 23(1): 1-9.
|
| [55] |
Royden L., Keen C. E. Rifting Process and Thermal Evolution of the Continental Margin of Eastern Canada Determined from Subsidence Curves. Earth and Planetary Science Letters, 1980, 51(2): 343-361.
|
| [56] |
Saxby J. D., Bennett A. J. R., Corcoran J. F., . Petroleum Generation: Simulation over Six Years of Hydrocarbon Formation from Torbanite and Brown Coal in a Subsiding Basin. Organic Geochemistry, 1986, 9(2): 69-81.
|
| [57] |
Schaefer R. G., Galushkin Y. I., Kolloff A., . Reaction Kinetics of Gas Generation in Selected Source Rocks of the West Siberian Basin: Implications for the Mass Balance of Early-Thermogenic Methane. Chemical Geology, 1999, 156(1/2/3/4): 41-65.
|
| [58] |
Schenk H. J., Di Primio R., Horsfield B. The Conversion of Oil into Gas in Petroleum Reservoirs. Part 1: Comparative Kinetic Investigation of Gas Generation from Crude Oils of Lacustrine, Marine and Fluviodeltaic Origin by Programmed-Temperature Closed-System Pyrolysis. Organic Geochemistry, 1997, 26(7/8): 467-481.
|
| [59] |
Shalaby M. R., Abdullah W. H., Abu Shady A. N. Burial History, Basin Modeling and Petroleum Source Potential in the Western Desert, Egypt. Bulletin of the Geological Society of Malaysia, 2008, 54: 103-113.
|
| [60] |
Snowdon L. R. Errors in Extrapolation of Experimental Kinetic Parameters to Organic Geochemical Systems: Geologic Notes. AAPG Bulletin, 1979, 63: 1128-1138.
|
| [61] |
Stainforth J. G. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine and Petroleum Geology, 2009, 26(4): 552-572.
|
| [62] |
Suuberg E. M., Peters W. A., Howard J. B. Product Composition and Kinetics of Lignite Pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 1978, 17(1): 37-46.
|
| [63] |
Sweeney J. J., Burnham A. K. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1). AAPG Bulletin, 1990, 74(10): 1559-1570.
|
| [64] |
Sykes R., Snowdon L. R. Guidelines for Assessing the Petroleum Potential of Coaly Source Rocks Using Rock-Eval Pyrolysis. Organic Geochemistry, 2002, 33(12): 1441-1455.
|
| [65] |
Tegelaar E. W., Noble R. A. Kinetics of Hydrocarbon Generation as a Function of the Molecular Structure of Kerogen as Revealed by Pyrolysis-Gas Chromatography. Organic Geochemistry, 1994, 22(3/4/5): 543-574.
|
| [66] |
Tilley B., Muehlenbachs K. Isotope Reversals and Universal Stages and Trends of Gas Maturation in Sealed, Self-Contained Petroleum Systems. Chemical Geology, 2013, 339: 194-204.
|
| [67] |
Tissot B. P., Espitalié J. L’evolution Thermique de la Matière Organique des Sédiments: Applications D’une Simulation Mathématique. Potentiel Pétrolier des Bassins Sédimentaires de Reconstitution de L’histoire Thermique des Sédiments. Revue de l’Institut Français du Pétrole, 1975, 30(5): 743-778.
|
| [68] |
Tissot B. P., Welte D. H. Petroleum Formation and Occurrence, 1984, New York: Springer-Verlag, 699
|
| [69] |
Ungerer P., Pelet R. Extrapolation of the Kinetics of Oil and Gas Formation from Laboratory Experiments to Sedimentary Basins. Nature, 1987, 327(6117): 52-54.
|
| [70] |
Ungerer P., Behar F., Villalba M., . Kinetic Modelling of Oil Cracking. Organic Geochemistry, 1988, 13(4/5/6): 857-868.
|
| [71] |
Ungerer P. State of the Art of Research in Kinetic Modelling of Oil Formation and Expulsion. In: Durand, B., Behar, F., eds., Proceedings of the 14th International Meeting on Organic Geochemistry, Paris, France, September 18–22, 1989. Org. Geochem., 1990, 16: 1-25.
|
| [72] |
Vandenbroucke M., Behar F., Rudkiewicz J. L. Kinetic Modelling of Petroleum Formation and Cracking: Implications from the High Pressure/High Temperature Elgin Field (UK, North Sea). Organic Geochemistry, 1999, 30(9): 1105-1125.
|
| [73] |
Waples D. W. Time and Temperature in Petroleum Formation: Application of Lopatin’s Method to Petroleum Exploration. AAPG Bulletin, 1982, 64: 916-926.
|
| [74] |
Waples D. W., Nowaczewski V. S. Source-Rock Kinetics, 2013.
|
| [75] |
Waples D. W. Petroleum Generation Kinetics: Single Versus Multiple Heating-Ramp Open-System Pyrolysis: Discussion. AAPG Bulletin, 2016, 100(4): 683-689.
|
| [76] |
Wood D. A. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 1988, 72: 115-135.
|
| [77] |
Wood D. A. Thermal Maturation Modeling Using Spreadsheets. Geobyte, 1990, 56-61.
|
| [78] |
Yang R., He S., Li T. Y., . Origin of Over-Pressure in Clastic Rocks in Yuanba Area, Northeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 2016, 30: 90-105.
|
| [79] |
Yang R., He S., Hu Q. H., . Geochemical Characteristics and Origin of Natural Gas from Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China). International Journal of Coal Geology, 2017, 171: 1-11.
|
| [80] |
Zhang E. T., Hill R. J., Katz B. J., . Modeling of Gas Generation from the Cameo Coal Zone in the Piceance Basin, Colorado. AAPG Bulletin, 2008, 92(8): 1077-1106.
|