Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 2: Geochemistry, thermal maturity, isotopes and biomarkers

David A. Wood, Bodhisatwa Hazra

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (5) : 758-778.

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (5) : 758-778. DOI: 10.1007/s12583-017-0733-9
Invited Review Article

Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 2: Geochemistry, thermal maturity, isotopes and biomarkers

Author information +
History +

Abstract

As shale exploitation is still in its infancy outside North America much research effort is being channelled into various aspects of geochemical characterization of shales to identify the most prospective basins, formations and map their petroleum generation capabilities across local, regional and basin-wide scales. The measurement of total organic carbon, distinguishing and categorizing the kerogen types in terms oil-prone versus gas-prone, and using vitrinite reflectance and Rock-Eval data to estimate thermal maturity are standard practice in the industry and applied to samples from most wellbores drilled. It is the trends of stable isotopes ratios, particularly those of carbon, the wetness ratio (C1/Σ(C2+C3)), and certain chemical biomarkers that have proved to be most informative about the status of shales as a petroleum system. These data make it possible to identify production “sweet-spots”, discriminate oil-, gas-liquid- and gas-prone shales from kerogen compositions and thermal maturities. Rollovers and reversals of ethane and propane carbon isotope ratios are particularly indicative of high thermal maturity exposure of an organic-rich shale. Comparisons of hopane, strerane and terpane biomarkers with vitrinite reflectance (Ro) measurements of thermal maturity highlight discrepancies suggesting that Ro is not always a reliable indicator of thermal maturity. Major and trace element inorganic geochemistry data and ratios provides useful information regarding provenance, paleoenvironments, and stratigraphic-layer discrimination. This review considers the data measurement, analysis and interpretation of techniques associated with kerogen typing, thermal maturity, stable and non-stable isotopic ratios for rocks and gases derived from them, production sweet-spot identification, geochemical biomarkers and inorganic chemical indicators. It also highlights uncertainties and discrepancies observed in their practical application, and the numerous outstanding questions associated with them.

Keywords

kerogen type / shale organic lithofacies / shale thermal maturity / shale isotopes / shale biomarkers / shale trace elements

Cite this article

Download citation ▾
David A. Wood, Bodhisatwa Hazra. Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 2: Geochemistry, thermal maturity, isotopes and biomarkers. Journal of Earth Science, 2017, 28(5): 758‒778 https://doi.org/10.1007/s12583-017-0733-9

References

Akinlua A., Smith R. M. Subcritical Water Extraction of Trace Metals from Petroleum Source Rock. Talanta, 2010, 81(4/5): 1346-1349.
CrossRef Google scholar
Algeo T. J., Rowe H. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 2012, 324/325: 6-18.
CrossRef Google scholar
American Society for TestingMaterials ASTM Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks, 2015.
American Society for TestingMaterials ASTM Standard Test Method for Microscopical Determination of the Reflectance of the Vitrinite Reflectance of Coal, 2015.
Baldock J. A., Skjemstad J. O. Role of the Soil Matrix and Minerals in Protecting Natural Organic Materials against Biological Attack. Organic Geochemistry, 2000, 31(7/8): 697-710.
CrossRef Google scholar
Barker C. E. An Update on the Suppression of Vitrinite Reflectance. TSOP Newsletter, 1991, 8(4): 8-11.
Behar F., Beaumont V., De B., Penteado H. L. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 2001, 56(2): 111-134.
CrossRef Google scholar
Behar F., Kressmann S., Rudkiewicz J. L., . Experimental Simulation in a Confined System and Kinetic Modelling of Kerogen and Oil Cracking. Organic Geochemistry, 1992, 19(1/2/3): 173-189.
CrossRef Google scholar
Behar F., Vandenbroucke M. Chemical Modelling of Kerogens. Organic Geochemistry, 1987, 11(1): 15-24.
CrossRef Google scholar
Bergamaschi B. A., Tsamakis E., Keil R. G., . The Effect of Grain Size and Surface Area on Organic Matter, Lignin and Carbohydrate Concentration, and Molecular Compositions in Peru Margin Sediments. Geochimica et Cosmochimica Acta, 1997, 61(6): 1247-1260.
CrossRef Google scholar
Berrocoso A. J., MacLeod K. G., Calvert S. E., . Bottom Water Anoxia, Inoceramid Colonization, and Benthopelagic Coupling during Black Shale Deposition on Demerara Rise (Late Cretaceous Western Tropical North Atlantic). Paleoceanography, 2008, 23(3): 1-20.
Bertrand P., Béhar F., Durand B. Composition of Potential Oil from Humic Coals in Relation to Their Petrographic Nature. Organic Geochemistry, 1986, 10(1/2/3): 601-608.
CrossRef Google scholar
Bock M. J., Mayer L. M. Mesodensity Organo-Clay Associations in a Near-Shore Sediment. Marine Geology, 2000, 163(1/2/3/4): 65-75.
CrossRef Google scholar
Bostick N. H., Foster J. N. Alpern B. Comparison of Vitrinite Reflectance in Coal Seams and in Kerogen of Sandstones, Shales, and Limestones in the Same Part of a Sedimentary Section. Petrographie de la Matiereorganique des Sediments, Relations Avec la Paleotemperature et le Potential Petrolier, Paris, CNRS, 1975, 13-25.
Bowker K. A. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 2007, 91(4): 523-533.
CrossRef Google scholar
Burnaman M. D., Xia W. W., Shelton J. Shale Gas Play Screening and Evaluation Criteria. China Pet. Explor., 2009, 14(3): 51-64.
Burruss R. C., Laughrey C. D. Carbon and Hydrogen Isotopic Reversals in Deep Basin Gas: Evidence for Limits to the Stability of Hydrocarbons. Organic Geochemistry, 2010, 41(12): 1285-1296.
CrossRef Google scholar
Carpentier B., Huc A.-Y., Hamou P., . Detection, Distribution and Origin of Thin Tar Mats in the Miller Field (North Sea, UK), 1995, 388-390.
Carpentier B., Huc A.-Y., Marquis F., . Distribution and Origin of a Tar Mat in the S. Field (Abu Dhabi, A.E.U.), 1998
CrossRef Google scholar
Carr A. D. Suppression and Retardation of Vitrinite Reflectance, Part 1. Formation and Significance for Hydrocarbon Generation. Journal of Petroleum Geology, 2000, 23(3): 313-343.
CrossRef Google scholar
Carvajal-Ortiz H., Gentzis T. Critical Considerations when Assessing Hydrocarbon Plays Using Rock-Eval Pyrolysis and Organic Petrology Data: Data Quality Revisited. International Journal of Coal Geology, 2015, 152: 113-122.
CrossRef Google scholar
Chen G. J., Yen M. C., Wang J. M., . Layered Inorganic/Enzyme Nanohybrids with Selectivity and Structural Stability upon Interacting with Biomolecules. Bioconjugate Chemistry, 2008, 19(1): 138-144.
CrossRef Google scholar
Chen J. P., Qin Y., Huff B. G., . Geochemical Evidence for Mudstone as the Possible Major Oil Source Rock in the Jurassic Turpan Basin, Northwest China. Organic Geochemistry, 2001, 32(9): 1103-1125.
CrossRef Google scholar
Chen Z. H., Liu X. J., Guo Q. L., . Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 2017, 194: 91-101.
CrossRef Google scholar
Chung H. M., Gormly J. R., Squires R. M. Origin of Gaseous Hydrocarbons in Subsurface Environments: Theoretical Considerations of Carbon Isotope Distribution. Chemical Geology, 1988, 71(1/2/3): 97-104.
CrossRef Google scholar
Clayton C. Carbon Isotope Fractionation during Natural Gas Generation from Kerogen. Marine and Petroleum Geology, 1991, 8(2): 232-240.
CrossRef Google scholar
Clayton J. L. Geochemistry of Coalbed Gas––A Review. International Journal of Coal Geology, 1998, 35(1/2/3/4): 159-173.
CrossRef Google scholar
Coleman D., Liu C.-L., Hackley K. C., . Isotopic Identification of Landfill Methane. Environmental Geosciences, 1993, 2(2): 95-103.
Cooles G. P., MacKenzie A. S., Quigley T. M. Calculation of Petroleum Masses Generated and Expelled from Source Rocks. Organic Geochemistry, 1986, 10(1/2/3): 235-245.
CrossRef Google scholar
Cornelius C. D. Muttergesteinfaziesals Parameter der Erdölbildung. Erdöl-ErdgasZeitschrift, 1978, 3: 90-94.
Cornford C. Glennie K. W. Source Rocks and Hydrocarbons of the North Sea, Chapter 11. Petroleum Geology of the North Sea, Basic Concepts and Recent Advances: Fourth Edition, 2009, Oxford: Blackwell Science Ltd, 376-462.
Curtis J. B. Fractured Shale-Gas Systems. AAPG Bulletin, 2002, 86(11): 1921-1938.
Dai J. X., Zou C. N., Dong D. Z., . Geochemical Characteristics of Marine and Terrestrial Shale Gas in China. Marine and Petroleum Geology, 2016, 76(9): 444-463.
CrossRef Google scholar
Darrah T. H., Vengosh A., Jackson R. B., . Noble Gases Identify the Mechanisms of Fugitive Gas Contamination in Drinking-Water Wells Overlying the Marcellus and Barnett Shales. Proceedings of the National Academy of Sciences, 2014, 111(39): 14076-14081.
CrossRef Google scholar
Delvaux D., Martin H., Leplat P., . Comparative Rock-Eval Pyrolysis as an Improved Tool for Sedimentary Organic Matter Analysis. Organic Geochemistry, 1990, 16(4/5/6): 1221-1229.
CrossRef Google scholar
Dembicki H. Jr., Horsfield B., Ho T. T. Y. Source Rock Evaluation by Pyrolysis-Gas Chromatography. AAPG Bulletin, 1983, 67: 1094-1103.
Du J. G., Jin Z. J., Xie H. S., . Stable Carbon Isotope Compositions of Gaseous Hydrocarbons Produced from High Pressure and High Temperature Pyrolysis of Lignite. Organic Geochemistry, 2003, 34(1): 97-104.
CrossRef Google scholar
Espitalié J., Deroo G., Marquis F. La Pyrolyse Rock-Eval et Ses Applications. Troisième Partie. Revue de l’Institut Français du Pétrole, 1986, 41(1): 73-89.
CrossRef Google scholar
Espitalié J., Laporte J. L., Madec M., . Méthode Rapide de Caractérisation des Roches Mètres, de Leur Potentiel Pétrolier et de Leur Degré D’évolution. Revue de l’Institut Français du Pétrole, 1977, 32(1): 23-42.
CrossRef Google scholar
Espitalié J., Madec M., Tissot B. Role of Mineral Matrix in Kerogen Pyrolysis: Influence on Petroleum Generation and Migration. AAPG Bulletin, 1980, 64: 59-66.
Espitalié J., Madec M., Tissot B. Voorhees K. J. Geochemical Logging. Analytical Pyrolysis-Techniques and Applications, 1984, Butterworth: Boston, 276-304
CrossRef Google scholar
Espitalié J., Marquis F., Sage L. Brooks J., Glennie K. Organic Geochemistry of the Paris Basin. Petroleum Geology of North-West Europe, 1987, London: Graham and Totman, 71-86.
Feng Z. Q., Liu D., Huang S. P., . Carbon Isotopic Composition of Shale Gas in the Silurian Longmaxi Formation of the Changning Area, Sichuan Basin. Petroleum Exploration and Development, 2016, 43(5): 769-777.
CrossRef Google scholar
Filby R. H., van Berkel G. J. Filby R. H. Geochemistry of Metal Complexes in Petroleum, Source Rocks and Coals: An Overview. Metal Complexes in Fossil Fuels, 1987, Washington DC: American Chemical Society, 2-39
CrossRef Google scholar
Forsman, J. P., 1963. Geochemistry of Kerogen. Organic Geochemistry. Breger, I. A., ed., Pergamon Press, New York. 148–182
Gallegos E. J. Terpane-Sterane Release from Kerogen by Pyrolysis Gas Chromatography-Mass Spectrometry. Analytical Chemistry, 1975, 47(9): 1524-1528.
CrossRef Google scholar
Gentzis T., Goodarzi F. Mukhopadhyay P. K., Dow W. G. Reflectance Suppression in Some Cretaceous Coals from Alberta, Canada. Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations, 1994, 570, Washington, DC.: Symposium Series, ACS, 93-110
CrossRef Google scholar
Goddard W. A., Tang Y., Wu S., . Novel Gas Isotope Interpretation Tools to Optimize Gas Shale Production, 2013.
Golding S. D., Boreham C. J., Esterle J. S. Stable Isotope Geochemistry of Coal Bed and Shale Gas and Related Production Waters: A Review. International Journal of Coal Geology, 2013, 120: 24-40.
CrossRef Google scholar
Goodarzi F. Organic Petrology of Hat Creek Coal Deposit No. 1, British Columbia. International Journal of Coal Geology, 1985, 5(4): 377-396.
CrossRef Google scholar
Goodarzi F. Comparison of Reflectance Data from Various Macerals from Sub-Bituminous Coals. Journal of Petroleum Geology, 1987, 10(2): 219-226.
CrossRef Google scholar
Goodarzi F., Gentzis T., Feinstein S., . Effect of Maceral Subtypes and Mineral Matrix on Measured Reflectance of Subbituminous Coals and Dispersed Organic Matter. International Journal of Coal Geology, 1988, 10(4): 383-398.
CrossRef Google scholar
Gromet L. P., Haskin L. A., Korotev R. L., . The “North American Shale Composite”: Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469-2482.
CrossRef Google scholar
Gurba L. W., Ward C. R. Vitrinite Reflectance Anomalies in the High-Volatile Bituminous Coals of the Gunnedah Basin, New South Wales, Australia. International Journal of Coal Geology, 1998, 36(1/2): 111-140.
CrossRef Google scholar
Hackley P. C., Araujo C. V., Borrego A. G., . Standardization of Reflectance Measurements in Dispersed Organic Matter: Results of an Exercise to Improve Interlaboratory Agreement. Mar. Pet. Geol., 2015, 59: 22-34.
CrossRef Google scholar
Hackley P. C., Cardott B. J. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 2016, 163: 8-51.
CrossRef Google scholar
Hackley P. C., Guevara E. H., Hentz T. F., . Thermal Maturity and Organic Composition of Pennsylvanian Coals and Carbonaceous Shales, North-Central Texas: Implications for Coalbed Gas Potential. International Journal of Coal Geology, 2009, 77(3/4): 294-309.
CrossRef Google scholar
Hackley P. C., Ryder R. T., Trippi M. H., . Thermal Maturity of Northern Appalachian Basin Devonian Shales: Insights from Sterane and Terpane Biomarkers. Fuel, 2013, 106: 455-462.
CrossRef Google scholar
Hakimi M. H., Abdullah W. H. Biological Markers and Carbon Isotope Composition of Organic Matter in the Upper Cretaceous Coals and Carbonaceous Shale Succession (Jiza-Qamar Basin, Yemen): Origin, Type and Preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 409: 84-97.
CrossRef Google scholar
Hakimi M. H., Abdullah W. H., Shalaby M. R., . Geochemistry and Organic Petrology Study of Kimmeridgian Organic-Rich Shales in the Marib-Shabowah Basin, Yemen: Origin and Implication for Depositional Environments and Oil-Generation Potential. Marine and Petroleum Geology, 2014, 50: 185-201.
CrossRef Google scholar
Hakimi M. H., Ahmed A. F., Abdullah W. H. Organic Geochemical and Petrographic Characteristics of the Miocene Salif Organic-Rich Shales in the Tihama Basin, Red Sea of Yemen: Implications for Paleoenvironmental Conditions and Oil-Generation Potential. International Journal of Coal Geology, 2016, 154/155: 193-204.
CrossRef Google scholar
Hao F., Chen J. Y. The Cause and Mechanism of Vitrinite Reflectance Anomalies. Journal of Petroleum Geology, 1992, 15(4): 419-434.
CrossRef Google scholar
Harrington J., Whyte C., Muehlenbachs K., . Using Noble Gas and Hydrocarbon Gas Geochemistry to Source the Origin of Fluids in the Eagle Ford Shale of Texas, USA, 2015, 1-31.
Hartkopf-Fröder C., Königshof P., Littke R., . Optical Thermal Maturity Parameters and Organic Geochemical Alteration at Low Grade Diagenesis to Anchimetamorphism: A Review. International Journal of Coal Geology, 2015, 150/151: 74-119.
CrossRef Google scholar
Hazra B., Dutta S., Kumar S. TOC Calculation of Organic Matter Rich Sediments Using Rock-Eval Pyrolysis: Critical Consideration and Insights. International Journal of Coal Geology, 2017, 169: 106-115.
CrossRef Google scholar
Hazra B., Varma A. K., Bandopadhyay A. K., . Petrographic Insights of Organic Matter Conversion of Raniganj Basin Shales, India. International Journal of Coal Geology, 2015, 150/151: 193-209.
CrossRef Google scholar
Hunt J. M. Distribution of Carbon in Crust of Earth: Geological Notes. AAPG Bulletin, 1972, 56: 2273-2277.
Hunt J. M. Petroleum Geochemistry and Geology, 1996, New York: W. H. Freeman and Company
Hutton A. C., Cook A. C. Influence of Alginite on the Reflectance of Vitrinite from Joadja, NSW, and some other Coals and Oil Shales Containing Alginite. Fuel, 1980, 59(10): 711-714.
CrossRef Google scholar
Iglesias M. J., del Rı́o J. C., Laggoun-Défarge F., . Control of the Chemical Structure of Perhydrous Coals; FTIR and Py-GC/MS Investigation. Journal of Analytical and Applied Pyrolysis, 2002, 62(1): 1-34.
CrossRef Google scholar
International Committee for Coal Petrology ICCP International Handbook of Coal Petrography, 1971, 2, Paris: CNRS
Jarvie D. M. Shale Resource Systems for Oil and Gas: Part 1—Shale-Gas Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs— Giant Resources for the 21st Century. AAPG Memoir, 2012, 97: 69-87.
Jarvie D. M. Shale Resource Systems for Oil and Gas: Part 2 — Shale-Oil Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs— Giant Resources for the 21st Century. AAPG Memoir, 2012, 97: 89-119.
Jarvie D. M. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta, Alago Special Publicatio, 2014, 12(4): 307-325.
Jarvie D. M., Claxton B. L., Henk F., . Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas. Abstract, AAPG Annual Meeting Program, 2001.
Jarvie D. M., Hill R. J., Pollastro R. M. Pollastro, R. M., 2005. Assessment of the Gas Potential and Yields from Shales: The Barnett Shale Model. In: Cardott, B. J., ed., Unconventional Energy Resources in the Southern Midcontinent, 2004 Symposium. Oklahoma Geological Survey Circular, 2005, 110: 37-50.
Jarvie D. M., Hill R. J., Ruble T. E., . Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 2007, 91(4): 475-499.
CrossRef Google scholar
Jarvie D. M., Lundell L. L. Hydrocarbon Generation Modeling of Naturally and Artificially Matured Barnett Shale, Fort Worth Basin, Texas, 1991.
Jia W., Segal E., Kornemandel D., . Polyaniline-DBSA/Organophilic Clay Nanocomposites: Synthesis and Characterization. Synthetic Metals, 2002, 128(1): 115-120.
CrossRef Google scholar
Jones J., Murchison D. G., Saleh S. Gaertner H. W., Wehner H. Variation of Vitrinite Reflectivity in Relation to Lithology. Advances in Organic Geochemistry 1971, 1972, Oxford: Pergamon Press, 601-612.
Kalkreuth W. D. Rank and Petrographic Composition of Selected Jurassic–Lower Cretaceous Coals of British Columbia, Canada. Can. Petrol. Geol. Bull., 1982, 30: 112-139.
Kalkreuth W., Macauley G. The Organic Petrology of Selected Oil Shale Samples from the Lower Carboniferous Albert Formation, New Brunswick, Canada. Bulletin of Canadian Petroleum Geology, 1984, 32(1): 38-51.
Kalkreuth W., Macauley G. Organic Petrology and Geochemical (Rock-Eval) Studies on Oil Shales and Coals from the Pictou and Antigonish Areas, Nova Scotia, Canada. Bull. Can. Petrol. Geol., 1987, 35: 263-295.
Keil R. G., Cowie G. L. Organic Matter Preservation through the Oxygen-Deficient Zone of the NE Arabian Sea as Discerned by Organic Carbon: Mineral Surface Area Ratios. Marine Geology, 1999, 161(1): 13-22.
CrossRef Google scholar
Keil R. G., Montluçon D. B., Prahl F. G., . Sorptive Preservation of Labile Organic Matter in Marine Sediments. Nature, 1994, 370(6490): 549-552.
CrossRef Google scholar
Kelley K. D., Graham G. E., Benzel W. M., . André-Mayer A.-S., Cathelineau M., Muehez P., . Extent of Metalliferous Intervals and Principal Hosts of Mo, Ni, V, and Zn in Oil Shale of the Mississippian Heath Formation, Montana, USA. Mineral Resources in a Sustainable World. Proceedings of 13th Biennial Mtg., Society for Geology Applied to Mineral Deposits (SGA), August 24–27, 2015, Nancy, France, 2015, 1937-1940.
Kennedy M. J., Löhr S. C., Fraser S. A., . Direct Evidence for Organic Carbon Preservation as Clay-Organic Nanocomposites in a Devonian Black Shale: From Deposition to Diagenesis. Earth and Planetary Science Letters, 2014, 388: 59-70.
CrossRef Google scholar
Kennedy M. J., Pevear D., Hill R. Mineral Surface Control of Organic Carbon in Black Shale. Science, 2002, 295(5555): 657-660.
CrossRef Google scholar
Kennedy M. J., Wagner T. Clay Mineral Continental Amplifier for Marine Carbon Sequestration in a Greenhouse Ocean. Proceedings of the National Academy of Sciences, 2011, 108(24): 9776-9781.
CrossRef Google scholar
Ketris M. P., Yudovich Y. E. Estimations of Clarkes for Carbonaceous Biolithes: World Averages for Trace Element Contents in Black Shales and Coals. International Journal of Coal Geology, 2009, 78(2): 135-148.
CrossRef Google scholar
Khorasani G. K., Michelsen J. K. The Effects of Overpressure, Lithology, Chemistry and Heating Rate on Vitrinite Reflectance Evolution, and Its Relationship with Oil Generation. APEA J., 1994, 34(1): 418-434.
CrossRef Google scholar
Kimble B. J., Maxwell J. R., Philp R. P., . Tri-and Tetraterpenoid Hydrocarbons in the Messel Oil Shale. Geochimica et Cosmochimica Acta, 1974, 38(7): 1165-1181.
CrossRef Google scholar
Klaja J., Dudek L. Geological Interpretation of Spectral Gamma Ray (SGR) Logging in Selected Boreholes. Nafta-Gaz, 2016, 72(1): 3-14.
CrossRef Google scholar
Koŝina M., Heppner P. Macerals in Bituminous Coals and the Coking Process, 2. Coal Mass Properties and the Coke Mechanical Properties. Fuel, 1985, 64: 53-58.
CrossRef Google scholar
Lafargue E., Marquis F., Pillot D. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Revue de l'Institut Français du Pétrole, 1998, 53(4): 421-437.
CrossRef Google scholar
Laughrey C. D. Introductory Geochemistry for Shale Gas, Condensate-Rich Shales and Tight Oil Reservoirs, 2014, 325.
Leischner K., Welte D. H., Littke R. Dore A. G. Fluid Inclusions and Organic Maturity Parameters as Calibration Tools in Basin Modeling. Basin Modeling: Advances and Applications: NPF Special Publication, 1993, Amsterdam: Elsevier, 161-172.
Leventhal J. S. Schieber J., Zimmerle W., Sethi P. Metal-Rich Black Shales: Formation, Economic Geology and Environmental Considerations. Shales and Mudstones II. E. Schweizerbart’sche Verlagsbuchhandlung Stuttgart, 1998.
Lewan M. D., Henry M. E., Higley D. K., . Material-Balance Assessment of the New Albany-Chesterian Petroleum System of the Illinois Basin. AAPG Bulletin, 2002, 86: 745-777.
Little S. H., Vance D., Lyons T. W., . Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. American Journal of Science, 2015, 315(2): 77-119.
CrossRef Google scholar
Martini A. M., Walter L. M., Ku T. C. W., . Microbial Production and Modification of Gases in Sedimentary Basins: A Geochemical Case Study from a Devonian Shale Gas Play, Michigan Basin. AAPG Bulletin, 2003, 87(8): 1355-1375.
CrossRef Google scholar
Mayer L. M. Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271-1284.
CrossRef Google scholar
McCarthy K. R., Niemann M., Palmowski D., . Basic Petroleum Geochemistry for Source Rock Evaluation. Oilfield Review, 2011, 23(2): 32-43.
Moore T. A., Bowe M., Nas C. High Heat Flow Effects on a Coalbed Methane Reservoir, East Kalimantan (Borneo), Indonesia. International Journal of Coal Geology, 2014, 131: 7-31.
CrossRef Google scholar
Mukhopadhyay P. K. Vitrinite Reflectance as Maturity Parameter: Petrographic and Molecular Characterization and Its Applications to Basin Modeling. In: Mukhopadhyay, P. K., Dow, W. G., eds., Vitrinite Reflectance as a Maturity Parameter. ACS Symposium Series, 1994, 570: 1-25.
Mukhopadhyay P. K., Dow W. G. A Review of “Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations”. ACS Symposium Series, 1994, 570 294.
Newman J., Newman N. A. Reflectance Anomalies in Pike River Coals: Evidence of Variability in Vitrinite Type, with Implications for Maturation Studies and “Suggate Rank”. New Zealand Journal of Geology and Geophysics, 1982, 25(2): 233-243.
CrossRef Google scholar
Obermajer M., Fowler M. G., Snowdon L. R. Depositional Environment and Oil Generation in Ordovician Source Rocks from Southwestern Ontario, Canada: Organic Geochemical and Petrological Approach. AAPG Bulletin, 1999, 83: 1426-1453.
Ocampo R., Callot H. J., Albrecht P. Filby R. H. Evidence for Porphyrins of Bacterial and Algal Origin in Oil Shale. Metal Complexes in Fossil Fuels, 1987, Washington DC: American Chemical Society
Ohkouchi N., Kuroda J., Taira A. The Origin of Cretaceous Black Shales: A Change in the Surface Ocean Ecosystem and Its Triggers. Proceedings of the Japan Academy, Series B, 2015, 91(7): 273-291.
CrossRef Google scholar
Osborn S. G., McIntosh J. C. Chemical and Isotopic Tracers of the Contribution of Microbial Gas in Devonian Organic-Rich Shales and Reservoir Sandstones, Northern Appalachian Basin. Applied Geochemistry, 2010, 25(3): 456-471.
CrossRef Google scholar
Ostera H. A., García R., Malizia D., . Shale Gas Plays, Neuquén Basin, Argentina: Chemostratigraphy and Mud Gas Carbon Isotopes Insights. Brazilian Journal of Geology, 2016, 46(1): 181-196.
CrossRef Google scholar
Othman R., Ward C. R. Thermal Maturation Pattern in the Southern Bowen, Northern Gunnedah and Surat Basins, Northern New South Wales, Australia. International Journal of Coal Geology, 2002, 51(3): 145-167.
CrossRef Google scholar
Peters K. E. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 1986, 70: 318-329.
Peters K. E., Cassa M. R. Applied Source Rock Geochemistry. In: Magoon, L. B., Dow, W. G., eds., The Petroleum System from Source to Trap. AAPG Memoir, 1994, 60: 93-120.
Peters K. E., Walters C. C., Moldowan J. M. The Biomarker Guide, 2005, 2, Cambridge: Cambridge University Press
Petersen H. I., Vosgerau H. Composition and Organic Maturity of Middle Jurassic Coals, North-East Greenland: Evidence for Liptinite-Induced Suppression of Huminite Reflectance. International Journal of Coal Geology, 1999, 41(3): 257-274.
CrossRef Google scholar
Pillot D., Letort G., Romero-Sarmiento M. F., . Procédé Pour l’Évaluation d’Aumoins unecaractéristiquepétrolière d’un échantillon de Roche, 2014.
Pittion J. L., Gouadain J. Thomas B. M. Maturity Studies of the Jurassic ‘Coal Unit’ in Three Wells from the Haltenbanken Area. Petroleum Geochemistry in Exploration of the Norwegian Shelf, 1985, London: Graham and Trotman, 205-211
CrossRef Google scholar
Price L. C., Baker C. E. Suppression of Vtrinite Reflectance in Amorphous Rich Kerogen––A Major Unrecognized Problem. Journal of Petroleum Geology, 1985, 8(1): 59-84.
CrossRef Google scholar
Prinzhofer A. Burnard P. Noble Gases in Oil and Gas Accumulations, Chapter 9. Noble Gases as Geochemical Tracers, 2012, New York: Springer, 225-247.
Qu Z. Y., Sun J. N., Shi J. T., . Characteristics of Stable Carbon Isotopic Composition of Shale Gas. Journal of Natural Gas Geoscience, 2016, 1(2): 147-155.
CrossRef Google scholar
Quirke J. M. E. Filby R. H. Rationalization for the Predominance of Nickel and Vanadium Porphyrins in the Geosphere. Metal Complexes in Fossil Fuels, 1987, Washington DC: American Chemical Society
Ransom B., Bennett R. H., Baerwald R., . TEM Study of in Situ Organic Matter on Continental Margins: Occurrence and the “Monolayer” Hypothesis. Marine Geology, 1997, 138(1/2): 1-9.
CrossRef Google scholar
Ransom B., Kim D., Kastner M., . Organic Matter Preservation on Continental Slopes: Importance of Mineralogy and Surface Area. Geochimica et Cosmochimica Acta, 1998, 62(8): 1329-1345.
CrossRef Google scholar
Ratcliffe K. T., Wright A. M., Schmidt K. Application of Inorganic Whole-Rock Geochemistry to Shale Resource Plays: An Example from the Eagle Ford Formation, Texas. The Sedimentary Record, 2012, 10(2): 4-9.
CrossRef Google scholar
Raymond A. C., Murchison D. G. Influence of Exinitic Macerals on the Reflectance of Vitrinite in Carboniferous Sediments of the Midland Valley of Scotland. Fuel, 1991, 70(2): 155-161.
CrossRef Google scholar
Rice D. D. Composition and Origins of Coalbed Gas. In: Law, B. E., Rice, D. D., eds., Hydrocarbons from Coal. Studies in Geology, AAPG, 1993, 38: 159-184.
Rivera K., Quan T. M. Thermal Maturation Effects on the Nitrogen Isotopes in Marine Shales: A Case Study of the Woodford Shale, 2014.
Robert P. Durand B. The Optical Evolution of Kerogen and Geothermal Histories Applied to Oil and Gas Exploration. Kerogen, 1980, Paris: Technip, 385-414.
Robin P. L. Caracterisation des Kerogenes et de Leur Evolution par Spectroscopie in Frarouge: [Dissertation], 1975, Paris: University Louvain
Romero-Sarmiento M.-F., Pillot D., Letort G., . New Rock-Eval Method for Characterization of Unconventional Shale Resource Systems. Oil & Gas Science and Technology––Revue d’IFP Energies nouvelles, 2016, 71 3 37
CrossRef Google scholar
Romero-Sarmiento M.-F., Rouzaud J. N., Bernard S., . Evolution of Barnett Shale Organic Carbon Structure and Nanostructure with Increasing Maturation. Organic Geochemistry, 2014, 71: 7-16.
CrossRef Google scholar
Salmon V., Derenne S., Lallier-Vergès E., . Protection of Organic Matter by Mineral Matrix in a Cenomanian Black Shale. Organic Geochemistry, 2000, 31(5): 463-474.
CrossRef Google scholar
Satterberg J., Arnarson T. S., Lessard E. J., . Sorption of Organic Matter from Four Phytoplankton Species to Montmorillonite, Chlorite and Kaolinite in Seawater. Marine Chemistry, 2003, 81(1/2): 11-18.
CrossRef Google scholar
Schmoker J. W., . Gautier D. L., Dolton G. L., Takahashi K. I., . Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. 1995 National Assessment of United States Oil and Gas Resources––Results, Methodology, and Supporting Data, 1995.
Schoell M. Genetic Characterization of Natural Gases. American Association of Petroleum Geologists Bulletin, 1983, 67: 2225-2238.
Scott C., Slack J. F., Kelley K. D. The Hyper-Enrichment of V and Zn in Black Shales of the Late Devonian-Early Mississippian Bakken Formation (USA). Chemical Geology, 2017, 452: 24-33.
CrossRef Google scholar
Seifert W. K. Application of Steranes and Terpanes in Kerogen Pyrolysis for Correlation of Oils and Source Rocks. Geochimica et Cosmochimica Acta, 1978, 42(5): 473-484.
CrossRef Google scholar
Seifert W. K., Moldowan J. M. Johns R. B. Use of Biomarkers in Petroleum Exploration. Methods in Geochemistry and Geophysics, 1986, 24, Amsterdam: Elsevier, 261-290.
Snowdon L. R. Rock-Eval T max Suppression: Documentation and Amelioration. AAPG Bulletin, 1995, 79: 1337-1348.
Sposito G., Skipper N. T., Sutton R., . Surface Geochemistry of the Clay Minerals. Proceedings of the National Academy of Sciences, 1999, 96(7): 3358-3364.
CrossRef Google scholar
Stach E., Mackowsky M.-Th., Teichmüller M., . Stach’s Textbook of Coal Petrology, 1982, 3, Berlin-Stuttgart: Gebrüder Borntraeger, 535.
Stahl W. J. Carbon and Nitrogen Isotopes in Hydrocarbon Research and Exploration. Chemical Geology, 1977, 20: 121-149.
CrossRef Google scholar
Strąpoć D., Mastalerz M., Schimmelmann A., . Geochemical Constraints on the Origin and Volume of Gas in the New Albany Shale (Devonian–Mississippian), Eastern Illinois Basin. AAPG Bulletin, 2010, 94(11): 1713-1740.
CrossRef Google scholar
Suárez-Ruiz I., Flores D., Mendonça Filho J. G., . Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. International Journal of Coal Geology, 2012, 99: 54-112.
CrossRef Google scholar
Suárez-Ruiz I., Iglesias M. J., Jiménez Bautista A., . Mukhopadhyay P. K., Dow W. G., . Petrographic and Geochemical Anomalies Detected in the Spanish Jurassic Jet. Vitrinite Reflectance as a Maturity Parameter. Applications and Limitations. American Chemical Society Symposium Series, 570, Chapter 6. ACS Books, 1994, 76-92.
Suárez-Ruiz I., Jimenez A., Iglesias M. J., . Influence of Resinite on Huminite Properties. Energy & Fuels, 1994, 8(6): 1417-1424.
CrossRef Google scholar
Sun X., Zhang T. W., Sun Y. G., . Geochemical Evidence of Organic Matter Source Input and Depositional Environments in the Lower and Upper Eagle Ford Formation, South Texas. Organic Geochemistry, 2016, 98: 66-81.
CrossRef Google scholar
Sweeney J. J., Burnham A.K. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1). AAPG Bulletin, 1990, 74(10): 1559-1570.
Sykes R., Snowdon L. R. Guidelines for Assessing the Petroleum Potential of Coaly Source Rocks Using Rock-Eval Pyrolysis. Organic Geochemistry, 2002, 33(12): 1441-1455.
CrossRef Google scholar
Tang X. L., Jiang Z. X., Huang H. X., . Lithofacies Characteristics and Its Effect on Gas Storage of the Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 2016, 28: 338-346.
CrossRef Google scholar
Tang Y., Jenden P. D., Nigrini A., . Modeling Early Methane Generation in Coal. Energy & Fuels, 1996, 10(3): 659-671.
CrossRef Google scholar
Tang Y., Perry J. K., Jenden P. D., . Mathematical Modeling of Stable Carbon Isotope Ratios in Natural Gases. Geochimica et Cosmochimica Acta, 2000, 64(15): 2673-2687.
CrossRef Google scholar
Taylor G. H. Given P. H. The Electron Microscopy of Vitrinites. Papers of Conf. Coal Science, Advances in Chemistry Series 55, 1996, Washington DC: American Chemical Society, 274-283.
Taylor G. H., Teichmuller M., Davis A. Organic Petrology: Chapter 7, 1998, Berlin: Gebrüder Borntraeger
Teichmüller M. Recent Advances in Coalification Studies and Their Application to Geology. Geological Society, London, Special Publications, 1987, 32(1): 127-169.
CrossRef Google scholar
Tewari A., Dutta S., Sarkar T. Organic Geochemical Characterization and Shale Gas Potential of the Permian Barren Measures Formation, West Bokaro Sub-Basin, Eastern India. Journal of Petroleum Geology, 2016, 39(1): 49-60.
CrossRef Google scholar
Theng B. K. G., Churchman G. J., Newman R. H. The Occurrence of Interlayer Clay-Organic Complexes in Two New Zealand Soils. Soil Science, 1986, 142(5): 262-266.
CrossRef Google scholar
Tilley B., Muehlenbachs K. Isotope Reversals and Universal Stages and Trends of Gas Maturation in Sealed, Self-Contained Petroleum Systems. Chemical Geology, 2013, 339: 194-204.
CrossRef Google scholar
Tissot B. P., Welte D. H. Petroleum Formation and Occurrence, 1984, 2, Berlin, Heidelberg, New York, Tokyo: Springer-Verlag
CrossRef Google scholar
Tissot B. P., Welte D. H. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration, 1978, Berlin, Heidelberg, New York: Springer-Verlag
CrossRef Google scholar
Tissot B. P., Pelet R., Ungerer P. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 1987, 71: 1445-1466.
Trabelsi K., Espitalié J., Huc A.-Y. Characterization of Extra Heavy Oils and Tar Deposits by Modified Pyrolysis Methods, 1994, 30-40.
Tribovillard N., Algeo T. J., Lyons T., . Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 2006, 232(1/2): 12-32.
CrossRef Google scholar
Tuo J. C., Wu C. J., Zhang M. F. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 2016, 28: 434-446.
CrossRef Google scholar
Turekian K. K., Wedepohl K. H. Distribution of the Elements in some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 1961, 72 2 175
CrossRef Google scholar
van Krevelen D. W. Coal: Typology-Chemistry-Physics-Constitution, 1961, 1, Amsterdam: Elsevier, 514.
van Krevelen D. W. Coal: Typology-Chemistry-Physics-Constitution, 1993, 3, Amsterdam: Elsevier, 979.
Vandenbroucke M., Largeau C. Kerogen Origin, Evolution and Structure. Organic Geochemistry, 2007, 38(5): 719-833.
CrossRef Google scholar
VanHazebroeck E., Borrok D. M. A New Method for the Inorganic Geochemical Evaluation of Unconventional Resources: An Example from the Eagle Ford Shale. Journal of Natural Gas Science and Engineering, 2016, 33: 1233-1243.
CrossRef Google scholar
Varma A. K., Hazra B., Mendhe V. A., . Assessment of Organic Richness and Hydrocarbon Generation Potential of Raniganj Basin Shales, West Bengal, India. Marine and Petroleum Geology, 2015, 59: 480-490.
CrossRef Google scholar
Varma A. K., Hazra B., Samad S. K., . Methane Sorption Dynamics and Hydrocarbon Generation of Shale Samples from West Bokaro and Raniganj Basins, India. Journal of Natural Gas Science and Engineering, 2014, 21: 1138-1147.
CrossRef Google scholar
Varma A. K., Hazra B., Samad S. K., . Shale Gas Potential of Lower Permian Shales from Raniganj and West Bokaro Basins, India, 2014, 40-41.
Vengosh A., Warner N., Osborn S., . Elucidating Water Contamination by Fracturing Fluids and Formation Waters from Gas Wells: Integrating Isotopic and Geochemical Tracers, 2011.
Vinci Technologies Rock-Eval 6 Operator Manual, 2003, France: Vinci Technologies
Vine J. D., Tourtelot E. B. Geochemistry of Black Shale Deposits: A Summary Report. Economic Geology, 1970, 65(3): 253-272.
CrossRef Google scholar
Wang X. B., Zhang B., He Z. X., . Electrical Properties of Longmaxi Organic-Rich Shale and Its Potential Applications to Shale Gas Exploration and Exploitation. Journal of Natural Gas Science and Engineering, 2016, 36: 573-585.
CrossRef Google scholar
Wanty R. B., Goldhaber M. B. Thermodynamics and Kinetics of Reactions Involving Vanadium in Natural Systems: Accumulation of Vanadium in Sedimentary Rocks. Geochimica et Cosmochimica Acta, 1992, 56(4): 1471-1483.
CrossRef Google scholar
Wei X. F., Guo T. L., Liu R. B. Geochemical Features and Genesis of Shale Gas in the Jiaoshiba Block of Fuling Shale Gas Field, Chongqing, China. Journal of Natural Gas Geoscience, 2016, 1(5): 361-371.
CrossRef Google scholar
Welte D. H. Relation between Petroleum and Source Rock. AAPG Bulletin, 1965, 49: 2249-2267.
Whiticar M. J. Correlation of Natural Gases with Their Sources. In: Magoon, J., Dow, W. G., eds., The Petroleum System––From Source to Trap. American Association of Petroleum Geologists, Memoir, 1994, 60: 261-283.
Whiticar M. J. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gases. International Journal of Coal Geology, 1996, 32(1/2/3/4): 191-215.
CrossRef Google scholar
Wilkins R. W. T., George S. C. Coal as a Source Rock for Oil: A Review. International Journal of Coal Geology, 2002, 50(1/2/3/4): 317-361.
CrossRef Google scholar
Wood D. A. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 1988, 72: 115-135.
Wood D. A. Re-establishing the Merits of Thermal Maturity and Petroleum Generation Multi-Dimensional Modelling with an Arrhenius Equation Using a Single Activation Energy. Journal of Earth Science, 2017, 28(5): 804-834.
Wüst R. A., Hackley P. C., Nassichuk B. R., . Vitrinite Reflectance versus Pyrolysis T max Data: Assessing Thermal Maturity in Shale Plays with Special Reference to the Duvernay Shale Play of the Western Canadian Sedimentary Basin, Alberta, Canada, 2013.
Xia X. Y., Chen J., Braun R., . Isotopic Reversals with Respect to Maturity Trends due to Mixing of Primary and Secondary Products in Source Rocks. Chemical Geology, 2013, 339: 205-212.
CrossRef Google scholar
Xia X. Y., Tang Y. C. Erratum to X. Xia and Y. Tang (2012) “Isotope Fractionation of Methane during Natural Gas Flow with Coupled Diffusion and Adsorption/Desorption” Geochimica et Cosmochimica Acta 77, 489–503. Geochimica et Cosmochimica Acta, 2012, 83: 398-399.
CrossRef Google scholar
Yang R., He S., Hu Q. H., . Geochemical Characteristics and Origin of Natural Gas from Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China). International Journal of Coal Geology, 2017, 171: 1-11.
CrossRef Google scholar
Zeng H., Li J., Liu W. New Insights into Carbon Isotopic Reversals of Deep Gas in Songliao Basin, China, 2011, 3.
Zhang M. J., Tang Q. Y., Cao C. H., . Molecular and Carbon Isotopic Variation in 3.5 Years Shale Gas Production from Longmaxi Formation in Sichuan Basin, China. Marine and Petroleum Geology, 2017.
Zhou Z., Ballentine C. J., Kipfer R., . Noble Gas Tracing of Groundwater/Coalbed Methane Interaction in the San Juan Basin, USA. Geochimica et Cosmochimica Acta, 2005, 69(23): 5413-5428.
CrossRef Google scholar
Zimmerman A. R., Chorover J., Goyne K. W., . Protection of Mesopore-Adsorbed Organic Matter from Enzymatic Degradation. Environmental Science & Technology, 2004, 38(17): 4542-4548.
CrossRef Google scholar
Zou Y.-R., Cai Y. L., Zhang C. C., . Variations of Natural Gas Carbon Isotope-Type Curves and Their Interpretation––A Case Study. Organic Geochemistry, 2007, 38(8): 1398-1415.
CrossRef Google scholar
Zumberge J. E., Ferworn K. A., Curtis J. B. Gas Character Anomalies Found in Highly Productive Shale Gas Wells. Geochimica et Cosmochimica Acta, 2009, 73 A1539
CrossRef Google scholar
Zumberge J. E., Ferworn K., Brown S. Isotopic Reversal (‘Rollover’) in Shale Gases Produced from the Mississippian Barnett and Fayetteville Formations. Marine and Petroleum Geology, 2012, 31(1): 43-52.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/