Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 1: Bulk properties, multi-scale geometry and gas adsorption

David A. Wood , Bodhisatwa Hazra

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (5) : 739 -757.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (5) :739 -757. DOI: 10.1007/s12583-017-0732-x
Invited Review Article

Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 1: Bulk properties, multi-scale geometry and gas adsorption

Author information +
History +
PDF

Abstract

Shales, the most abundant of sedimentary rocks, are valued as the source-rocks and seals to porous petroleum reservoirs. Over the past-twenty years, organic-rich shales have also emerged as valuable petroleum systems (reservoir, seal, and source rocks contained in the same formation). As such they have become primary targets for petroleum exploration and exploitation. This Part 1 of a three-part review addresses the bulk properties, multi-scale geometry and gas adsorption characteristics of these diverse and complex rocks. Shales display extremely low permeability, and their porosity is also low, but multi-scale. Characterizing the geometry and interconnectivity of the pore-structure frameworks with the natural-fracture networks within shales is essential for establishing their petroleum exploitation potential. Organic-rich shales typically contain two distinct types of porosity: matrix porosity and fracture porosity. In addition to inter-granular porosity, the matrix porosity includes two types of mineral-hosted porosity: inorganic-mineral-hosted porosity (IP); and, organic-matter-hosted (within the kerogen) porosity (OP). Whereas, the fracture porosity and permeability is crucial for petroleum production from shales, it is within the OP where, typically, much of the in-situ oil and gas resources resides, and from where it needs to be mobilized. OP increases significantly as shales become more thermally mature (i.e., within the gas generation zones), and plays a key role in the ultimate recovery from shale-gas systems. Shales’ methane sorption capacities (MSC) tends to be positively correlated with their total organic carbon content (TOC), thermal maturation, and micropore volume. Clay minerals also significantly influence key physical properties of shale related to fluid flow (permeability) and response to stress (fracability) that determine their prospectivity for petroleum exploitation. Clay minerals can also adsorb gas, some much better than others. The surface area of the pore structure of shales can be positively or negatively correlated with TOC content, depending upon mineralogy and thermal maturity, and can influence its gas adsorption capacity. Part 2 of this three-part review considers, in a separate article, the geochemistry and thermal maturity characteristics of shale; whereas Part 3, addresses the geomechanical attributes of shales, including their complex wettability, adsorption, water imbibition and “fracability” characteristics. The objectives of this Part 1 of the review is to identify important distinguishing characteristics related to the bulk properties of the most-prospective, petroleum-rich shales.

Keywords

shale gas / shale lithofacies / shale porosity / shale methane adsorption / shale fractal dimensions / shale surface area

Cite this article

Download citation ▾
David A. Wood, Bodhisatwa Hazra. Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 1: Bulk properties, multi-scale geometry and gas adsorption. Journal of Earth Science, 2017, 28(5): 739-757 DOI:10.1007/s12583-017-0732-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aarnes I., Fristad K., Planke S., . The Impact of Host-Rock Composition on Devolatilization of Sedimentary Rocks during Contact Metamorphism around Mafic Sheet Intrusions. Geochemistry, Geophysics, Geosystems, 2011, 12(10): 1-11.

[2]

Aarnes I., Svensen H., Polteau S., . Contact Metamorphic Devolatilization of Shales in the Karoo Basin, South Africa, and the Effects of Multiple Sill Intrusions. Chemical Geology, 2011, 281(3/4): 181-194.

[3]

Aarnes I., Svensen H., Connolly J. A. D., . How Contact Metamorphism can Trigger Global Climate Changes: Modeling Gas Generation around Igneous Sills in Sedimentary Basins. Geochimica et Cosmochimica Acta, 2010, 74(24): 7179-7195.

[4]

Agirrezabala L. M., Permanyer A., Suárez-Ruiz I., . Contact Metamorphism of Organic-Rich Mudstones and Carbon Release around a Magmatic Sill in the Basque-Cantabrian Basin, Western Pyrenees. Organic Geochemistry, 2014, 69: 26-35.

[5]

Alling H. L. Use of Microlithologies as Illustrated by Some New York Sedimentary Rocks. Geological Society of America Bulletin, 1945, 56 7 737

[6]

Altaner S. P., Ylagen R. F. Comparison of Structural Models of Mixed-Layer Illite/Smectite and Reaction Mechanisms of Smectite Illitization. Clays and Clay Minerals, 1997, 45(4): 517-533.

[7]

Ambrose R. J., Hartman R. C., Diaz-Campos M., . New Pore-Scale Considerations for Shale Gas in Place Calculations. SPE Unconventional Gas Conference, 2010, Pittsburgh, Pennsylvania, USA: Society of Petroleum Engineers

[8]

Aplin A. C., Macquaker J. H. S. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 2011, 95(12): 2031-2059.

[9]

Aringhieri R. Nanoporosity Characteristics of Some Natural Clay Minerals and Soils. Clays and Clay Minerals, 2004, 52(6): 700-704.

[10]

Arthur M. A., Sageman B. B. Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 499-551.

[11]

Aylmore L. A. G., Quirk J. P. The Micropore Size Distributions of Clay Mineral Systems. Journal of Soil Science, 1967, 18(1): 1-17.

[12]

Bai B., Zhu R. K., Wu S. T., . Multi-Scale Method of Nano (Micro)-CT Study on Microscopic Pore Structure of Tight Sandstone of Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 2013, 40(3): 354-358.

[13]

Barker C. E., Bone Y. The Minimal Response to Contact Metamorphism by the Devonian Buchan Caves Limestone, Buchan Rift, Victoria, Australia. Organic Geochemistry, 1995, 22(1): 151-164.

[14]

Bernard S., Wirth R., Schreiber A., . Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 2012, 103: 3-11.

[15]

Bernard S., Horsfield B., Schulz H. M., . Geochemical Evolution of Organic-Rich Shales with Increasing Maturity: A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Northern Germany). Marine and Petroleum Geology, 2012, 31(1): 70-89.

[16]

Berner R. A. Principles of Chemical Sedimentology, 1971, New York: McGraw-Hill Book Co.

[17]

Bethke C. M., Altaner S. P. Layer-by-Layer Mechanism of Smectite Illitization and Application to a New Rate Law. Clays and Clay Minerals, 1986, 34(2): 136-145.

[18]

Bhatia M. R. Plate Tectonics and Geochemical Composition of Sandstones: A Reply. The Journal of Geology, 1983, 93(1): 85-87.

[19]

Bishop A. N., Abbott G. D. Vitrinite Reflectance and Molecular Geochemistry of Jurassic Sediments: The Influence of Heating by Tertiary Dykes (Northwest Scotland). Organic Geochemistry, 1995, 22(1): 165-177.

[20]

Boggs S. Jr. Sedimentary Structures, Principles of Sedimentology and Stratigraphy, 2001, 3, Upper Saddle River, New Jersey: Prentice-Hall, 88-130.

[21]

Boggs S. Jr. Petrology of Sedimentary Rocks, 2009, Cambridge: Cambridge University Press

[22]

Boles J. R., Franks S. G. Clay Diagenesis in Wilcox Sandstones of Southwest Texas: Implications of Smectite Diagenesis on Sandstone Cementation. SEPM Journal of Sedimentary Research, 1979, 49: 55-70.

[23]

Boulmier J. L., Oberlin A., Rouzaud J. N., . O’Hare A. M. F., . Natural Organic Matters and Carbonaceous Materials: A Preferential Field of Application for Transmission Electron Microscopy. Scanning Electron Microscopy, 1982, Chicago: SEM Inc., 1523-1528.

[24]

Bowker K. A. Development of the Barnett Shale Play, Fort Worth Basin. West Texas Geol. Soc. Bull., 2003, 42(6): 4-11.

[25]

Bowker K. A. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 2007, 91(4): 523-533.

[26]

Brunauer S., Emmett P. H., Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 1938, 60(2): 309-319.

[27]

Bu H. L., Ju Y. W., Tan J. Q., . Fractal Characteristics of Pores in Non-Marine Shales from the Huainan Coalfield, Eastern China. Journal of Natural Gas Science and Engineering, 2015, 24: 166-177.

[28]

Buatier M. D., Peacor D. R., ÓNeil J. R. Smectite-Illite Transition in Barbados Accretionary Wedge Sediments: TEM and AEM Evidence for Dissolution/Crystallization at Low Temperature. Clays and Clay Minerals, 1992, 40(1): 65-80.

[29]

Caers J. Geostatistical Reservoir Modelling Using Statistical Pattern Recognition. Journal of Petroleum Science and Engineering, 2001, 29(3/4): 177-188.

[30]

Cai Y. D., Liu D. M., Pan Z. J., . Pore Structure and Its Impact on CH4 Adsorption Capacity and Flow Capability of Bituminous and Subbituminous Coals from Northeast China. Fuel, 2013, 103: 258-268.

[31]

Camp W. K. Diagenetic Evolution of Organic Matter Cements in Unconventional Shale Reservoirs, 2015.

[32]

Camp W. K., Diaz E., Wawak B. Electron Microscopy of Shale Hydrocarbon Reservoirs. AAPG Memoir, 2013, 102 260.

[33]

Camp W. K., Wawak B. Enhancing SEM Grayscale Images through Pseudo-Color Conversion: Examples from Eagle Ford, Haynesville, and Marcellus Shales, 2013, Denver: Unconventional Resources Technology Conference, 2300-2307.

[34]

Cao T. T., Song Z. G., Wang S. B., . Characterization of Pore Structure and Fractal Dimension of Paleozoic Shales from the Northeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 2016, 35: 882-895.

[35]

Cao Z., Liu G. D., Zhan H. B., . Pore Structure Characterization of Chang-7 Tight Sandstone Using MICP Combined with N2GA Techniques and Its Geological Control Factors. Scientific Reports, 2016, 6 1 36919

[36]

Cardott B. J., Landis C. R., Curtis M. E. Post-Oil Solid Bitumen Network in the Woodford Shale, USA—A Potential Primary Migration Pathway. International Journal of Coal Geology, 2015, 139: 106-113.

[37]

Chalmers G. R. L., Bustin R. M., Power I. M. A Pore by Any Other Name Would be as Small: The Importance of Meso-and Microporosity in Shale Gas Capacity, 2009.

[38]

Chalmers G. R. L., Bustin R. M., Power I. M. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 2012, 96(6): 1099-1119.

[39]

Chalmers G. R. L., Bustin R. M. The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 2007, 70(1/2/3): 223-239.

[40]

Chalmers G. R. L., Bustin R. M. Lower Cretaceous Gas Shales in Northeastern British Columbia, Part I: Geological Controls on Methane Sorption Capacity. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 1-21.

[41]

Chalmers G. R. L., Bustin R. M. Lower Cretaceous Gas Shales in Northeastern British Columbia, Part II: Evaluation of Regional Potential Gas Resources. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 22-61.

[42]

Chareonsuppanimit P., Mohammad S. A., Robinson R. L. Jr., . High-Pressure Adsorption of Gases on Shales: Measurements and Modeling. International Journal of Coal Geology, 2012, 95: 34-46.

[43]

Chen J., Xiao X. M. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 2014, 129: 173-181.

[44]

Chen Z. H., Jiang C. Q. A Revised Method for Organic Porosity Estimation in Shale Reservoirs Using Rock-Eval Data: Example from Duvernay Formation in the Western Canada Sedimentary Basin. AAPG Bulletin, 2016, 100(3): 405-422.

[45]

Cheng A. L., Huang W. L. Selective Adsorption of Hydrocarbon Gases on Clays and Organic Matter. Organic Geochemistry, 2004, 35(4): 413-423.

[46]

Chermak J. A., Schreiber M. E. Mineralogy and Trace Element Geochemistry of Gas Shales in the United States: Environmental Implications. International Journal of Coal Geology, 2014, 126: 32-44.

[47]

Clarkson C. R., Bustin R. M. Binary Gas Adsorption/Desorption Isotherms: Effect of Moisture and Coal Composition Upon Carbon Dioxide Selectivity over Methane. International Journal of Coal Geology, 2000, 42(4): 241-271.

[48]

Clarkson C. R., Haghshenas B., Ghanizadeh A., . Nanopores to Megafractures: Current Challenges and Methods for Shale Gas Reservoir and Hydraulic Fracture Characterization. Journal of Natural Gas Science and Engineering, 2016, 31: 612-657.

[49]

Clarkson C. R., Bustin R. M. Variation in Micropore Capacity and Size Distribution with Composition in Bituminous Coal of the Western Canadian Sedimentary Basin. Fuel, 1996, 75(13): 1483-1498.

[50]

Clarkson C. R., Solano N., Bustin R. M., . Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 2013, 103: 606-616.

[51]

Coates G. R., Xiao L. Z., Prammer M. G. NMR Logging Principles and Applications, 1999, Houston: Gulf Publishing Company

[52]

Condie K. C. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 1993, 104(1/2/3/4): 1-37.

[53]

Cox B. L., Wang J. S. Y. Fractal Surfaces: Measurement and Applications in the Earth Sciences. Fractals, 1993, 1(1): 87-115.

[54]

Cox R., Lowe D. R., Cullers R. L. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.

[55]

Crosdale P. J., Moore T. A., Mares T. E. Influence of Moisture Content and Temperature on Methane Adsorption Isotherm Analysis for Coals from a Low-Rank, Biogenically-Sourced Gas Reservoir. International Journal of Coal Geology, 2008, 76(1/2): 166-174.

[56]

Cuadros J., Altaner S. P. Characterization of Mixed-Layer Illite-Smectite from Bentonites Using Microscopic, Chemical, and X-Ray Methods; Constraints on the Smectite-to-Illite Transformation Mechanism. American Mineralogist, 1998, 83(7/8): 762-774.

[57]

Curtis J. B. Fractured Shale-Gas Systems. AAPG Bulletin, 2002, 86(11): 1921-1938.

[58]

Dainyak L. G., Drits V. A., Zviagina B. B., . Cation Redistribution in the Octahedral Sheet during Diagenesis of Illite-Smectites from Jurassic and Cambrian Oil Source Rock Shales. American Mineralogist, 2006, 91(4): 589-603.

[59]

Dan Y., Seidle J. P., Hanson W. B. Gas Sorption on Coal and Measurement of Gas Content. Instituto Fernando el Católico. IFC, 1993, 7(2): 166-170.

[60]

Desbois G., Urai J. L., De Craen M. In-Situ and Direct Characterization of Porosity in Boom Clay (Mol Site, Belgium) by Using Novel Combination of Ion Beam Crosssectioning, SEM and Cryogenic Methods, 2010.

[61]

Desbois G., Urai J. L., Kukla P. A. Morphology of the Pore Space in Claystones––Evidence from BIB/FIB Ion Beam Sectioning and Cryo-SEM Observations. eEarth Discussions, 2009, 4(1): 1-19.

[62]

Di J., Jensen J. L. A Closer Look at Pore Throat Size Estimators for Tight Gas Formations. Journal of Natural Gas Science and Engineering, 2015, 27: 1252-1260.

[63]

Dickinson W. R., Beard L. S., Brakenridge G. R., . Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 1983, 94(2): 222-235.

[64]

Dong H. L. TEM Observations of Coherent Stacking Relations in Smectite, I/S and Illite of Shales: Evidence for MacEwan Crystallites and Dominance of 2M1 Polytypism. Clays and Clay Minerals, 1996, 44(2): 257-275.

[65]

Dong H. L., Peacor D. R., Freed R. L. Phase Relations among Smectite, R1 Illite-Smectite, and Illite. American Mineralogist, 1997, 82(3/4): 379-391.

[66]

Dow W. G. Kerogen Studies and Geological Interpretations. Journal of Geochemical Exploration, 1977, 7: 79-99.

[67]

EIA Energy Information Administration Shale in the United States-Energy in Brief, 2016.

[68]

EIA International Energy Outlook 2016, 2016.

[69]

EIA Annual Energy Outlook 2017, 2017.

[70]

Fedo C. M., Wayne Nesbitt H., Young G. M. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 1995, 23 10 921

[71]

Fishman N. S., Hackley P. C., Lowers H. A., . The Nature of Porosity in Organic-Rich Mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, Offshore United Kingdom. International Journal of Coal Geology, 2012, 103: 32-50.

[72]

Gasparik M., Bertier P., Gensterblum Y., . Geological Controls on the Methane Storage Capacity in Organic-Rich Shales. International Journal of Coal Geology, 2014, 123: 34-51.

[73]

Gasparik M., Ghanizadeh A., Bertier P., . High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands. Energy and Fuels, 2012, 26(8): 4995-5004.

[74]

Gensterblum Y., Ghanizadeh A., Cuss R. J., . Gas Transport and Storage Capacity in Shale Gas Reservoirs––A Review. Part A: Transport Processes. Journal of Unconventional Oil and Gas Resources, 2015, 12: 87-122.

[75]

Goergen E. T., Curtis M. E., Jernigen J., . Integrated Petrophysical Properties and Multi-Scaled SEM, 2014.

[76]

Guarnone M., Rossi F., Negri E., . An Unconventional Mindset for Shale Gas Surface Facilities. Journal of Natural Gas Science and Engineering, 2012, 6: 14-23.

[77]

Gunter G. W., Spain D. R., Virco E. J., . Winland Pore Throat Prediction Method––A Proper Retrospect: New Examplesfrom Carbonates and Complex Systems, 2014.

[78]

Harnois L. The CIW Index: A New Chemical Index of Weathering. Sedimentary Geology, 1988, 55(3/4): 319-322.

[79]

Hartwig A., Könitzer S., Boucsein B., . Applying Classical Shale Gas Evaluation Concepts to Germany—Part II: Carboniferous in Northeast Germany. Chemie der Erde-Geochemistry, 2010, 70: 93-106.

[80]

Hartwig A., Schulz H.-M. Applying Classical Shale Gas Evaluation Concepts to Germany—Part I: The Basin and Slope Deposits of the Stassfurt Carbonate (Ca2, Zechstein, Upper Permian) in Brandenburg. Chemie der Erde-Geochemistry, 2010, 70: 77-91.

[81]

Hatch C. D., Wiese J. S., Crane C. C., . Water Adsorption on Clay Minerals as a Function of Relative Humidity: Application of BET and Freundlich Adsorption Models. Langmuir, 2012, 28(3): 1790-1803.

[82]

Hayashi K. I., Fujisawa H., Holland H. D., . Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137.

[83]

Hazra B., Varma A. K., Bandopadhyay A. K., . Petrographic Insights of Organic Matter Conversion of Raniganj Basin Shales, India. International Journal of Coal Geology, 2015, 150/151: 193-209.

[84]

Hazra B., Varma A. K., Bandopadhyay A. K., . FTIR, XRF, XRD and SEM Characteristics of Permian Shales, India. Journal of Natural Gas Science and Engineering, 2016, 32: 239-255.

[85]

Heath J. E., Dewers T. A., McPherson B. J. O. L., . Pore Networks in Continental and Marine Mudstones: Characteristics and Controls on Sealing Behavior. Geosphere, 2011, 7(2): 429-454.

[86]

Helgeson H. C., Richard L., McKenzie W. F., . A Chemical and Thermodynamic Model of Oil Generation in Hydrocarbon Source Rocks. Geochimica et Cosmochimica Acta, 2009, 73(3): 594-695.

[87]

Hill D. G., Lombardi T. E., Martin J. P. Fractured Shale Gas Potential in New York. Northeastern Geology and Environmental Sciences, 2004, 26: 57-78.

[88]

Hill R. J., Zhang E. T., Katz B. J., . Modeling of Gas Generation from the Barnett Shale, Fort Worth Basin, Texas. AAPG Bulletin, 2007, 91(4): 501-521.

[89]

Hoffman J., Hower J. Clay Mineral Assemblages as Low Grade Metamorphic Geothermometers: Application to the Thrust Faulted Disturbed Belt of Montana, USA. Society of Economic Palaeontologists and Mineralogists, Special Publications, Tulsa, OK, 1979, 26: 55-79.

[90]

Hooson, W., 1747. The Miner’s Dictionary. Wrexham. 230

[91]

Hornby B. E., Schwartz L. M., Hudson J. A. Anisotropic Effective-Medium Modeling of the Elastic Properties of Shales. Geophysics, 1994, 59(10): 1570-1583.

[92]

Horsrud P., Sønstebø E. F., Bøe R. Mechanical and Petrophysical Properties of North Sea Shales. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(8): 1009-1020.

[93]

Hower J. C., Mowatt T. The Mineralogy of Illite and Mixed-Layer Illite/Montmorillonite. American Mineralogist, 1966, 51(7118): 825-854.

[94]

Hower J., Eslinger E. V., Hower M. E., . Mechanism of Burial Metamorphism of Argillaceous Sediment: 1. Mineralogical and Chemical Evidence. Geological Society of America Bulletin, 1976, 87 5 725

[95]

Hu J. G., Tang S. H., Zhang S. H. Investigation of Pore Structure and Fractal Characteristics of the Lower Silurian Longmaxi Shales in Western Hunan and Hubei Provinces in China. Journal of Natural Gas Science and Engineering, 2016, 28(6): 522-535.

[96]

Hubert J. F., Reed A. A. Red-Bed Diagenesis in the East Berlin Formation, Newark Group, Connecticut Valley. Journal of Sedimentary Research, 1978, 48(1): 175-184.

[97]

Hunt J. M. Petroleum Geochemistry and Geology, 1996, 2, New York: W. H. Freeman and Company, 743.

[98]

Ingram R. L. Fissility of Mudrocks. Geological Society of America Bulletin, 1953, 64(8): 869-878.

[99]

Jarvie D. M., Hill R. J., Ruble T. E., . Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 2007, 91(4): 475-499.

[100]

Jarvie D., Hill R., Pollastro R., . Evaluation of Unconventional Natural Gas Prospects: The Barnett Shale Fractured Shale Gas Model, 2003.

[101]

Javadpour F. Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone). Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21.

[102]

Javadpour F., Fisher D., Unsworth M. Nanoscale Gas Flow in Shale Gas Sediments. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61.

[103]

Jenkins C., Boyer C. I. Coalbed-and Shale-Gas Reservoirs. Journal of Petroleum Technology, 2008, 60(2): 92-99.

[104]

Jennings D. S., Antia J. Petrographic Characterization of the Eagle Ford Shale, South Texas: Mineralogy, Common Constituents, and Distribution of Nanometer-Scale Pore Types. In: Camp, W., Diaz, E., Wawak, B., eds., Electron Microscopy of Shale Hydrocarbon Reservoirs. AAPG Memoir, 2013, 102: 101-113.

[105]

Ji L. M., Zhang T. W., Milliken K. L., . Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks. Applied Geochemistry, 2012, 27(12): 2533-2545.

[106]

Jiao K., Yao S. P., Liu C., . The Characterization and Quantitative Analysis of Nanopores in Unconventional Gas Reservoirs Utilizing FESEM-FIB and Image Processing: An Example from the Lower Silurian Longmaxi Shale, Upper Yangtze Region, China. International Journal of Coal Geology, 2014, 128/129: 1-11.

[107]

Jizba D. L. Mechanical and Acoustical Properties of Sandstones and Shales: [Dissertation], 1991, Stanford: Stanford University

[108]

Josh M., Esteban L., Delle Piane C., . Laboratory Characterisation of Shale Properties. Journal of Petroleum Science and Engineering, 2012, 88/89: 107-124.

[109]

Joubert J. I., Grein C. T., Bienstock D. Effect of Moisture on the Methane Capacity of American Coals. Fuel, 1974, 53(3): 186-191.

[110]

Kargbo D. M., Wilhelm R. G., Campbell D. J. Natural Gas Plays in the Marcellus Shale: Challenges and Potential Opportunities. Environmental Science and Technology, 2010, 44(15): 5679-5684.

[111]

Katz A. J., Thompson A. H. Fractal Sandstone Pores: Implications for Conductivity and Pore Formation. Physical Review Letters, 1985, 54(12): 1325-1328.

[112]

Kerr R. A. Natural Gas from Shale Bursts Onto the Scene. Science, 2010, 328(5986): 1624-1626.

[113]

Khalili N. R., Pan M. Z., Sandı́ G. Determination of Fractal Dimensions of Solid Carbons from Gas and Liquid Phase Adsorption Isotherms. Carbon, 2000, 38(4): 573-588.

[114]

Kolodzie S. Jr.. Analysis of Pore Throat Size and Use of the Waxman-Smits Equation to Determine OOIP in Spindle Field, Colorado, 1980

[115]

Krooss B. M., van Bergen F., Gensterblum Y., . High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 2002, 51(2): 69-92.

[116]

Kuuskraa V., Stevens S. H., Moodhe K. D. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries, 2013.

[117]

Lamberson M. N., Bustin R. M. Coalbed Methane Characteristics of Gates Formation Coals, Northeastern British Columbia: Effect of Maceral Composition. AAPG Bulletin, 1993, 77: 2062-2076.

[118]

Lane H. S., Lancaster D. E., Watson A. T. Characterizing the Role of Desorption in Gas Production from Devonian Shales. Energy Sources, 1991, 13(3): 337-359.

[119]

Levine J. R., Davis A. Optical Anisotropy of Coals as an Indicator of Tectonic Deformation, Broad Top Coal Field, Pennsylvania. Geological Society of America Bulletin, 1984, 95 1 100

[120]

Levy J. H., Day S. J., Killingley J. S. Methane Capacities of Bowen Basin Coals Related to Coal Properties. Fuel, 1997, 76(9): 813-819.

[121]

Li A., Ding W. L., Wang R. Y., . Petrophysical Characterization of Shale Reservoir Based on Nuclear Magnetic Resonance (NMR) Experiment: A Case Study of Lower Cambrian Qiongzhusi Formation in Eastern Yunnan Province, South China. Journal of Natural Gas Science and Engineering, 2017, 37: 29-38.

[122]

Li D. Y., Liu Q. F., Weniger P., . High-Pressure Sorption Isotherms and Sorption Kinetics of CH4 and CO2 on Coals. Fuel, 2010, 89(3): 569-580.

[123]

Li X., Wang Q., Zhang W., . Contact Metamorphism of Shales Intruded by a Granite Dike: Implications for Shale Gas Preservation. International Journal of Coal Geology, 2016, 159: 96-106.

[124]

Li Y. H. Diabase and Hydrocarbon Reservoir Formation on the Northern Slope of Gaoyou Sag. Journal of Geomechanics, 2000, 6(2): 17-22.

[125]

Löhr S. C., Baruch E. T., Hall P. A., . Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter?. Organic Geochemistry, 2015, 87: 119-132.

[126]

Loucks R. G., Reed R. M., Ruppel S. C., . Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79(12): 848-861.

[127]

Loucks R. G., Reed R. M., Ruppel S. C., . Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 2012, 96(6): 1071-1098.

[128]

Loucks R. G., Ruppel S. C. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 2007, 91(4): 579-601.

[129]

Lu J. M., Ruppel S. C., Rowe H. D. Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale. AAPG Bulletin, 2015, 99(2): 333-357.

[130]

Lu X.-C., Li F.-C., Watson A. T. Adsorption Measurements in Devonian Shales. Fuel, 1995, 74(4): 599-603.

[131]

Mandelbrot B. B. Les Objects Fractals: Forme, Hasard et Dimension, 1975, Paris: Flammarion

[132]

Manger K. C., Oliver S. J. P., Curtis J. B., . Geologic Influences on the Location and Production of Antrim Shale Gas, Michigan Basin, 1991

[133]

Mariethoz G., Caers J. Multiple-Point Geostatistics: Stochastic Modeling with Training Images, 2014, New York: Wiley-Blackwell

[134]

Mastalerz M., He L. L., Melnichenko Y. B., . Porosity of Coal and Shale: Insights from Gas Adsorption and SANS/USANS Techniques. Energy and Fuels, 2012, 26(8): 5109-5120.

[135]

Mastalerz M., Schimmelmann A., Lis G. P., . Influence of Maceral Composition on Geochemical Characteristics of Immature Shale Kerogen: Insight from Density Fraction Analysis. International Journal of Coal Geology, 2012, 103: 60-69.

[136]

Mastalerz M., Schimmelmann A., Drobniak A., . Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 2013, 97(10): 1621-1643.

[137]

McBride E. F. Significance of Color in Red, Green, Purple, Olive, Brown, and Gray Beds of Difunta Group, Northeastern Mexico. SEPM Journal of Sedimentary Research, 1974, 44: 760-773.

[138]

McDonald D. A., Surdam R. C. Clastic Diagenesis. AAPG Memoir, 1984, 37 434.

[139]

McLennan S. M., Hemming S., McDaniel D. K., . Geochemical Approaches to Sedimentation, Provenance, and Tectonics. GSA Special Papers, 1993, 284: 21-40.

[140]

Miceli Romero A., Philp R. P. Organic Geochemistry of the Woodford Shale, Southeastern Oklahoma: How Variable can Shales be?. AAPG Bulletin, 2012, 96(3): 493-517.

[141]

Milliken K. L., Esch W. L., Reed R. M., . Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 2012, 96(8): 1553-1578.

[142]

Milliken K. L., Rudnicki M., Awwiller D. N., . Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 2013, 97(2): 177-200.

[143]

Milner M., McLin R., Petriello J. Imaging Texture and Porosity in Mudstones and Shales: Comparison of Secondary and Ion-Milled Backscatter SEM Methods, 2010.

[144]

Montgomery S. L., Jarvie D. M., Bowker K. A., . Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas: Gas-Shale Play with Multi-Trillion Cubic Foot Potential: Reply. AAPG Bulletin, 2006, 90(6): 967-969.

[145]

Myrow P. M. A New Graph for Understanding Colors of Mudrocks and Shales. Journal of Geological Education, 1990, 38(1): 16-20.

[146]

Nesbitt H. W., Young G. M. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 1982, 299(5885): 715-717.

[147]

Nesbitt H. W., Young G. M., McLennan S. M., . Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. The Journal of Geology, 1996, 104(5): 525-542.

[148]

Nieto F., Ortega-Huertas M., Peacor D. R., . Evolution of Illite/Smectite from Early Diagenesis through Incipient Metamorphism in Sediments of the Basque-Cantabrian Basin. Clays and Clay Minerals, 1996, 44(3): 304-323.

[149]

O’Brien N. R., Slatt R. M. Argillaceous Rock Atlas, 1990, New York: Springer-Verlag

[150]

Oberlin A. Thrower P. A. High-Resolution TEM Studies of Carbonization and Graphitization. Physic and Chemistry of Carbon, 1989, 22, New York: Marcel Dekker, 1-143.

[151]

Oberlin A., Boulmier J. L., Villey M. Durand B. Electron Microscopic Study of Kerogen Microtexture. Kerogen, 1980, New York: Technip, 191-241.

[152]

Othman R., Arouri K. R., Ward C. R., . Oil Generation by Igneous Intrusions in the Northern Gunnedah Basin, Australia. Organic Geochemistry, 2001, 32(10): 1219-1232.

[153]

Ougier-Simonin A., Renard F., Boehm C., . Microfracturing and Microporosity in Shales. Earth-Science Reviews, 2016, 162: 198-226.

[154]

Passey Q. R., Bohacs K. M., Esch W. L., . From Oil-Prone Rock to Gas-Producing Shale Reservoir—Geological and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs, 2010.

[155]

Perry E., Hower J. Burial Diagenesis in Gulf Coast Pelitic Sediments. Clays and Clay Minerals, 1970, 18(3): 165-177.

[156]

Peters K. E., Xia X., Pomerantz A. E., . Ma Y. Z., Holditch S. A., . Geochemistry Applied to Evaluation of Unconventional Resources. Unconventional Oil and Gas Resources Handbook: Evaluation and Development, 2016, Waltham, MA: Gulf Professional Publishing, 71-126

[157]

Pettijohn F. J. Sedimentary Rocks, 1984, New York: Harper and Row

[158]

Pettijohn F. J. Sedimentary Rocks Ch. 8, 1974, New York: Harper and Row

[159]

Pettijohn F. J. Sedimentary Rocks Ch. 8, 1975, New York: Harper and Row

[160]

Pfeifer P., Avnir D. Chemistry in Noninteger Dimensions between Two and Three. I. Fractal Theory of Heterogeneous Surfaces. The Journal of Chemical Physics, 1983, 79(7): 3558-3565.

[161]

Pollastro R. M., Hill R. J., Jarvie D. M., . Assessing Undiscovered Resources of the Barnett-Paleozoic Total Petroleum System, Bend Arch-Fort Worth Basin Province, Texas, 2003.

[162]

Pommer M., Milliken K. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 2015, 99(9): 1713-1744.

[163]

Potter P. E., Maynard J. B., Pryor W. A. Sedimentology of Shale Ch. 1, 1980, New York: Springer-Verlag

[164]

Ramos S. The Effect of Shale Composition on the Gas Sorption Potential of Organic-Rich Mudrocks in the Western Canadian Sedimentary Basin: [Dissertation], 2004, Vancouver: University of British Columbia, 150-153.

[165]

Rodriguez N. D., Philp R. P. Geochemical Characterization of Gases from the Mississippian Barnett Shale, Fort Worth Basin, Texas. AAPG Bulletin, 2010, 94(11): 1641-1656.

[166]

Rokosh C. D., Pawlowicz J. G., Berhane H., . What is Shale Gas? An Introduction to Shale-Gas Geology in Alberta, Open File Report 2008-08, 2009.

[167]

Roser B. P., Korsch R. J. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 1988, 67(1/2): 119-139.

[168]

Ross D. J. K., Bustin R. M. Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51-75.

[169]

Ross D. J. K., Bustin R. M. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 2008, 92(1): 87-125.

[170]

Ross D. J. K., Bustin R. M. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 2009, 26(6): 916-927.

[171]

Rouquerol J., Avnir D., Fairbridge C. W., . Recommendations for the Characterization of Porous Solids (Technical Report). Pure and Applied Chemistry, 1994, 66(8): 1739-1758.

[172]

Rouzaud J. N., Oberlin A. Charcosset H., Nickel-Pepin-Donat B. The Characterization of Coals and Cokes by Transmission Electron Microscopy. Advanced Methodologies in Coal Characterization, 1990, Amsterdam: Elsevier, 311-355.

[173]

Rowe H. D., Loucks R. G., Ruppel S. C., . Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk Geochemical Inferences and Mo-TOC Constraints on the Severity of Hydrographic Restriction. Chemical Geology, 2008, 257(1/2): 16-25.

[174]

Rubey W. W. Lithologic Studies of Fine-Grained Upper Cretaceous Sedimentary Rocks of the Black Hills Region: Section A in Shorter Contributions to General Geology, 1930, 1931.

[175]

Ruppel S. C., Loucks R. G. Black Mudrocks: Lessons and Questions from the Mississippian Barnett Shale in the Southern Midcontinent. The Sedimentary Record, 2008, 6: 4-8.

[176]

Sarout J., Guéguen Y. Anisotropy of Elastic Wave Velocities in Deformed Shales: Part 1—Experimental Results. Geophysics, 2008, 73(5): D75-D89.

[177]

Schieber J. Common Themes in the Formation and Preservation of Intrinsic Porosity in Shales and Mudstones-Illustrated with Examples across the Phanerozoic, 2010.

[178]

Schlueter E. M., Zimmerman R. W., Witherspoon P. A., . The Fractal Dimension of Pores in Sedimentary Rocks and Its Influence on Permeability. Engineering Geology, 1997, 48(3/4): 199-215.

[179]

Schmoker J. W., . Gautier D. L., Dolton G. L., Takahashi K. I., . Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. National Assessment of United States Oil and Gas Resources––Results, Methodology, and Supporting Data, 1995.

[180]

Shao X. H., Pang X. Q., Li Q. W., . Pore Structure and Fractal Characteristics of Organic-Rich Shales: A Case Study of the Lower Silurian Longmaxi Shales in the Sichuan Basin, SW China. Marine and Petroleum Geology, 2017, 80: 192-202.

[181]

Sing K. S. W., Everett D. H., Haul R. A. W., . Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 1985, 57(4): 603-619.

[182]

Slatt R. M., Abousleiman Y. Merging Sequence Stratigraphy and Geomechanics for Unconventional Gas Shales. The Leading Edge, 2011, 30(3): 274-282.

[183]

Slatt R. M., O’Brien N. R. Pore Types in the Barnett and Woodford Gas Shales: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks. AAPG Bulletin, 2011, 95(12): 2017-2030.

[184]

Slatt R. M., Rodriguez N. D. Comparative Sequence Stratigraphy and Organic Geochemistry of Gas Shales: Commonality or Coincidence?. Journal of Natural Gas Science and Engineering, 2012, 8: 68-84.

[185]

Sondergeld C. H., Ambrose R. J., Rai C. S., . Micro-Structural Studies of Gas Shales. SPE Unconventional Gas Conference, 2010.

[186]

Speight J. G. Shale Gas Production Processes, 2013, Houston: Gulf Professional Publishing, 170.

[187]

Speight J. G. The Chemistry and Technology of Petroleum, 2014, 5, Taylor and Francis Group, Boca Raton: CRC Press

[188]

Środoń J. Nature of Mixed-Layer Clays and Mechanisms of Their Formation and Alteration. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 19-53.

[189]

Środoń J., Eberl D. D., Drits V. A. Evolution of Fundamental-Particle Size during Illitization of Smectite and Implications for Reaction Mechanism. Clays and Clay Minerals, 2000, 48(4): 446-458.

[190]

Sun M. D., Yu B. S., Hu Q. H., . Nanoscale Pore Characteristics of the Lower Cambrian Niutitang Formation Shale: A Case Study from Well Yuke #1 in the Southeast of Chongqing, China. International Journal of Coal Geology, 2016, 154/155: 16-29.

[191]

Svensen H., Planke S., Chevallier L., . Hydrothermal Venting of Greenhouse Gases Triggering Early Jurassic Global Warming. Earth and Planetary Science Letters, 2007, 256(3/4): 554-566.

[192]

Tan J. Q., Weniger P., Krooss B., . Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part II: Methane Sorption Capacity. Fuel, 2014, 129: 204-218.

[193]

Tan J. Q., Horsfield B., Fink R., . Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part III: Lithofacial, Petrophysical, and Rock Mechanical Properties. Energy and Fuels, 2014, 28: 2322-2342.

[194]

Tewari A., Dutta S., Sarkar T. Organic Geochemical Characterization and Shale Gas Potential of the Permian Barren Measures Formation, West Bokaro Sub-Basin, Eastern India. Journal of Petroleum Geology, 2016, 39(1): 49-60.

[195]

Tian H., Pan L., Zhang T., . Pore Characterization of Organic-Rich Lower Cambrian Shales in Qiannan Depression of Guizhou Province, Southwestern China. Marine and Petroleum Geology, 2015, 62: 28-43.

[196]

Tissot B. P., Welte D. H. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration, 1978, Berlin, Heidelberg, New York: Springer-Verlag

[197]

Tomlinson C. W. The Origin of Red Beds. Amer. Jour. Sci., 1916, 24: 153-179.

[198]

Tourtelot H. A. Black Shale—Its Deposition and Diagnesis. Clays and Clay Minerals, 1979, 27: 313-321.

[199]

Trabucho-Alexandre J., Hay W., de Boer P. Phanerozoic Black Shales and the Wilson Cycle. Solid Earth, 2011, 3: 29-42.

[200]

Uffmann A. K., Littke R., Rippen D. Mineralogy and Geochemistry of Mississippian and Lower Pennsylvanian Black Shales at the Northern Margin of the Variscan Mountain Belt (Germany and Belgium). International Journal of Coal Geology, 2012, 103: 92-108.

[201]

Unsworth J. F., Fowler C. S., Jones L. F. Moisture in Coal: 2. Maceral Effects on Pore Structure. Fuel, 1989, 68: 18-26.

[202]

Varma A. K., Hazra B., Srivastava A. Estimation of Total Organic Carbon in Shales through Color Manifestations. Journal of Natural Gas Science and Engineering, 2014, 18: 53-57.

[203]

Varma A. K., Hazra B., Srivastava A. Corrigendum to “Estimation of Total Organic Carbon in Shales through Color Manifestations”. Journal of Natural Gas Science and Engineering, 2014, 18: 53-57.

[204]

Varma A. K., Hazra B., Samad S. K., . Methane Sorption Dynamics and Hydrocarbon Generation of Shale Samples from West Bokaro and Raniganj Basins, India. Journal of Natural Gas Science and Engineering, 2014, 21: 1138-1147.

[205]

Varma A. K., Hazra B., Samad S. K., . Shale Gas Potential of Lower Permian Shales from Raniganj and West Bokaro Basins, India, 2014, 40-41.

[206]

Vine J. D., Tourtelot E. B. Geochemistry of Black Shale Deposits; A Summary Report. Economic Geology, 1970, 65(3): 253-272.

[207]

Wang C. C., Juang L. C., Lee C. K., . Effects of Exchanged Surfactant Cations on the Pore Structure and Adsorption Characteristics of Montmorillonite. Journal of Colloid and Interface Science, 2004, 280(1): 27-35.

[208]

Wang F. P., Reed R. M. Pore Networks and Fluid Flow in Gas Shales, 2009

[209]

Wang L., Yu Q. C. The Effect of Moisture on the Methane Adsorption Capacity of Shales: A Study Case in the Eastern Qaidam Basin in China. Journal of Hydrology, 2016, 542: 487-505.

[210]

Wang Y., Zhu Y. M., Liu S. M., . Pore Characterization and Its Impact on Methane Adsorption Capacity for Organic-Rich Marine Shales. Fuel, 2016, 181: 227-237.

[211]

Wilson M. J., Shaldybin M. V., Wilson L. Clay Mineralogy and Unconventional Hydrocarbon Shale Reservoirs in the USA. I. Occurrence and Interpretation of Mixed-Layer R3 Ordered Illite/Smectite. Earth-Science Reviews, 2016, 158: 31-50.

[212]

Xiong J., Liu X. J., Liang L. X. Experimental Study on the Pore Structure Characteristics of the Upper Ordovician Wufeng Formation Shale in the Southwest Portion of the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 2015, 22: 530-539.

[213]

Yaalon D. H. Mineral Composition of the Average Shale. Clay Minerals, 1962, 5(27): 31-36.

[214]

Yang F., Ning Z. F., Liu H. Q. Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China. Fuel, 2014, 115: 378-384.

[215]

Yang F., Ning Z. F., Wang Q., . Pore Structure Characteristics of Lower Silurian Shales in the Southern Sichuan Basin, China: Insights to Pore Development and Gas Storage Mechanism. International Journal of Coal Geology, 2016, 156: 12-24.

[216]

Yang F., Ning Z., Hu C., . Characterization of Microscopic Pore Structures in Shale Reservoirs. Acta Petrologica Sinica, 2013, 34: 301-311.

[217]

Yang R., He S., Yi J., . Nano-Scale Pore Structure and Fractal Dimension Oforganic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 2016, 70: 27-45.

[218]

Yang Y., Wang C., Gao Y., . New Pore Space Characterization Method of Shale Matrix Formation by Considering Organic and Inorganic Pores. Journal of Natural Gas Science and Engineering, 2015, 27: 496-503.

[219]

Yao Y., Liu D., Tang D., . Fractal Characterization of Adsorption-Pores of Coals from North China: An Investigation on CH4 Adsorption Capacity of Coals. International Journal of Coal Geology, 2008, 73(1): 27-42.

[220]

Yuan W. N., Pan Z. J., Li X., . Experimental Study and Modelling of Methane Adsorption and Diffusion in Shale. Fuel, 2014, 117: 509-519.

[221]

Yven B., Sammartino S., Geraud Y., . Mineralogy, Texture and Porosity of Callovo-Oxfordian Argillites of the Meuse/Haute-Marne Region (Eastern Paris Basin). Bulletin de la Societe Geologique de France, 2007, 178: 73-90.

[222]

Zhang T. W., Ellis G. S., Ruppel S. C., . Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems. Organic Geochemistry, 2012, 47: 120-131.

[223]

Zhang X., Liu C. L., Zhu Y. M., . The Characterization of a Marine Shale Gas Reservoir in the Lower Silurian Longmaxi Formation of the Northeastern Yunnan Province, China. Journal of Natural Gas Science and Engineering, 2015, 27: 321-335.

[224]

Zhong T. X. Characteristics of Pore Structure of Marine Shales in South China. Natural Gas Industry, 2012, 32(9): 1-4.

[225]

Zhou L. L., Friis H., Poulsen M. L. K. Geochemical Evaluation of the Late Paleocene and Early Eocene Shales in Siri Canyon, Danish-Norwegian Basin. Marine and Petroleum Geology, 2015, 61: 111-122.

[226]

Zhou L., Kang Z. H. Fractal Characterization of Pores in Shales Using NMR: A Case Study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China. Journal of Natural Gas Science and Engineering, 2016, 35: 860-872.

[227]

Zhu D. Y., Jin Z. J., Hu W. X., . Effect of Igneous Activity on Hydrocarbon Source Rocks in Jiyang Sub-Basin, Eastern China. Journal of Petroleum Science and Engineering, 2007, 59(3/4): 309-320.

[228]

Zhu X. J., Cai J. G., Wang X. J., . Effects of Organic Components on the Relationships between Specific Surface Areas and Organic Matter in Mudrocks. International Journal of Coal Geology, 2014, 133: 24-34.

AI Summary AI Mindmap
PDF

334

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/