High water content in primitive mid-ocean ridge basalt from Southwest Indian Ridge (51.56ºE): Implications for recycled hydrous component in the mantle

Wei Li , Zhenmin Jin , Haiming Li , Chunhui Tao

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (3) : 411 -421.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (3) : 411 -421. DOI: 10.1007/s12583-017-0731-y
Petrogeochemistry and Geochronology

High water content in primitive mid-ocean ridge basalt from Southwest Indian Ridge (51.56ºE): Implications for recycled hydrous component in the mantle

Author information +
History +
PDF

Abstract

The Southwest Indian Ridge (SWIR) is an ultraslow spreading end-member of mid-ocean ridge system and is characterized by weak or even an absence of magmatism. The segment between Indomed (ITF) and Gallieni (GTF) transform faults in the SWIR, however, displays extremely magmatic accretion with an unusual thick crust (up to 9.5 km). Although H2O is present in trace amounts in the mantle, it has a strong influence on mantle melting and magmatism in the shallow crust. The mid-ocean ridge basalts (MORB) worldwide show strong variation in H2O contents, but with a nearly uniform H2O/Ce ratio. Regionally distinctive H2O contents and H2O/Ce ratios are inferred to be related to the H2O variation in the source and can be used to constrain the mantle heterogenity. In this study, we measured the H2O and trace elements of clinopyroxene phenocrysts from one basalt dredged from the ITF-GTF segment, SWIR (51.56°E). The estimated H2O content (1.3 wt.%±0.3 wt.%) in the primitive ITF-GTF basaltic melt is much higher than that in typical MORB samples, but similar to oceanic island basalts (OIB) and back-arc basalts (BABB). In addition, the calculated H2O/Ce ratio (1 672-4 990) are extremely high, bearing “arc-like” signature. This study provides evidence that arc-related hydrous components are involved in the mantle source beneath the ITF-GTF ridge segment. It further lends support to the hypothesis that the mantle beneath the central SWIR may have experienced an ancient hydrous melting event in an arc terrain prior to or during the closure of the Mozambique Ocean in the Neoproterozoic.

Keywords

clinopyroxene phenocryst / FTIR / MORB / Southwest Indian Ridge / water content

Cite this article

Download citation ▾
Wei Li, Zhenmin Jin, Haiming Li, Chunhui Tao. High water content in primitive mid-ocean ridge basalt from Southwest Indian Ridge (51.56ºE): Implications for recycled hydrous component in the mantle. Journal of Earth Science, 2017, 28(3): 411-421 DOI:10.1007/s12583-017-0731-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anders E., Grevesse N. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 1989, 53(1): 197-214.

[2]

Asimow P. D., Dixon J. E., Langmuir C. H. A Hydrous Melting and Fractionation Model for Mid-Ocean Ridge Basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 2004, 5 1 Q01E16

[3]

Asimow P. D., Langmuir C. H. The Importance of Water to Oceanic Mantle Melting Regimes. Nature, 2003, 421(6925): 815-820.

[4]

Bédard J. H. Parameterizations of Calcic Clinopyroxene-Melt Trace Element Partition Coefficients. Geochemistry, Geophysics, Geosystems, 2014, 15(2): 303-336.

[5]

Bell D. R., Ihinger P. D., Rossman G. R. Quantitative Analysis of Trace OHin Garnet and Pyroxenes. American Mineralogist, 1995, 80(5/6): 465-474.

[6]

Bell D. R., Rossman G. R. Water in Earth’s Mantle: The Role of Nominally Anhydrous Minerals. Science, 1992, 255(5050): 1391-1397.

[7]

Bézos A., Lorand J. P., Humler E., . Platinum-Group Element Systematics in Mid-Oceanic Ridge Basaltic Glasses from the Pacific, Atlantic, and Indian Oceans. Geochimica et Cosmochimica Acta, 2005, 69(10): 2613-2627.

[8]

Bizimis M., Peslier A. H. Water in Hawaiian Garnet Pyroxenites: Implications for Water Heterogeneity in the Mantle. Chemical Geology, 2015, 397(2): 61-75.

[9]

Breton T., Nauret F., Pichat S., . Geochemical Heterogeneities within the Crozet Hotspot. Earth and Planetary Science Letters, 2013, 376: 126-136.

[10]

Cannat M., Sauter D., Bezos A., . Spreading Rate, Spreading Obliquity, and Melt Supply at the Ultraslow Spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 2008, 9 4 Q04002

[11]

Cannat M., Sauter D., Escartín J., . Oceanic Corrugated Surfaces and the Strength of the Axial Lithosphere at Slow Spreading Ridges. Earth and Planetary Science Letters, 2009, 288(1/2): 174-183.

[12]

Chen T., Jin Z. M., Shen A. H., . Altered Spinel as a Petrotectonic Indicator in Abyssal Peridotite from the Easternmost Part of Southwest Indian Ridge. Journal of Earth Science, 2016, 27(4): 611-622.

[13]

Danyushevsky L. V. The Effect of Small Amounts of H2O on Crystallisation of Mid-Ocean Ridge and Backarc Basin Magmas. Journal of Volcanology and Geothermal Research, 2001, 110(3/4): 265-280.

[14]

Danyushevsky L. V., Eggins S. M., Falloon T. J., . H2O Abundance in Depleted to Moderately Enriched Mid-Ocean Ridge Magmas; Part I: Incompatible Behaviour, Implications for Mantle Storage, and Origin of Regional Variations. Journal of Petrology, 2000, 41(8): 1329-1364.

[15]

Danyushevsky L. V., Falloon T. J., Sobolev A. V., . The H2O Content of Basalt Glasses from Southwest Pacific Back-Arc Basins. Earth and Planetary Science Letters, 1993, 117(3/4): 347-362.

[16]

Dick H. J. B., Fisher R. L., Bryan W. B. Mineralogic Variability of the Uppermost Mantle along Mid-Ocean Ridges. Earth and Planetary Science Letters, 1984, 69(1): 88-106.

[17]

Dick H. J. B., Zhou H. Y. Ocean Rises are Products of Variable Mantle Composition, Temperature and Focused Melting. Nature Geoscience, 2015, 8(1): 68-74.

[18]

Dixon J. E., Clague D. A. Volatiles in Basaltic Glasses from Loihi Seamount, Hawaii: Evidence for a Relatively Dry Plume Component. Journal of Petrology, 2001, 42(3): 627-654.

[19]

Dixon J. E., Clague D. A., Wallace P., . Volatiles in Alkalic Basalts Form the North Arch Volcanic Field, Hawaii: Extensive Degassing of Deep Submarine-Erupted Alkalic Series Lavas. Journal of Petrology, 1997, 38(7): 911-939.

[20]

Dixon J. E., Leist L., Langmuir C., . Recycled Dehydrated Lithosphere Observed in Plume-Influenced Mid-Ocean-Ridge Basalt. Nature, 2002, 420(6914): 385-389.

[21]

Dixon J. E., Stolper E. M. An Experimental Study of Water and Carbon Dioxide Solubilities in Mid-Ocean Ridge Basaltic Liquids. Part II: Applications to Degassing. Journal of Petrology, 1995, 36(6): 1633-1646.

[22]

Dixon J. E., Stolper E. M., Delaney J. R. Infrared Spectroscopic Measurements of CO2 and H2O in Juan de Fuca Ridge Basaltic Glasses. Earth and Planetary Science Letters, 1988, 90(1): 87-104.

[23]

Dobson P. F., Skogby H., Rossman G. R. Water in Boninite Glass and Coexisting Orthopyroxene: Concentration and Partitioning. Contributions to Mineralogy and Petrology, 1995, 118(4): 414-419.

[24]

Font L., Murton B. J., Roberts S., . Variations in Melt Productivity and Melting Conditions along SWIR (70ºE–49ºE): Evidence from Olivine-Hosted and Plagioclase-Hosted Melt Inclusions. Journal of Petrology, 2007, 48(8): 1471-1494.

[25]

Gaetani G. A., Grove T. L. The Influence of Water on Melting of Mantle Peridotite. Contributions to Mineralogy and Petrology, 1998, 131(4): 323-346.

[26]

Gale A., Dalton C. A., Langmuir C. H., . The Mean Composition of Ocean Ridge Basalts. Geochemistry, Geophysics, Geosystems, 2013, 14(3): 489-518.

[27]

Gao C. G., Dick H. J. B., Liu Y., . Melt Extraction and Mantle Source at a Southwest Indian Ridge Dragon Bone Amagmatic Segment on the Marion Rise. Lithos, 2016, 246/247: 48-60.

[28]

Gibler, R., Peslier, A. H., Schaffer, L. A., et al., 2014. Water Content in the SWUSA Mantle Lithosphere: FTIR Analysis of Dish Hill and Kilbourne Hole Pyroxenites. AGU Fall Meeting, San Francisco. DI21A-4260

[29]

Grant K., Ingrin J., Lorand J. P., . Water Partitioning between Mantle Minerals from Peridotite Xenoliths. Contributions to Mineralogy and Petrology, 2007, 154(1): 15-34.

[30]

Green D. H., Hibberson W. O., Kovács I., . Water and Its Influence on the Lithosphere-Asthenosphere Boundary. Nature, 2010, 467(7314): 448-451.

[31]

Hart S. R., Dunn T. Experimental Cpx/melt Partitioning of 24 Trace Elements. Contributions to Mineralogy and Petrology, 1993, 113(1): 1-8.

[32]

Hauri E. H., Wagner T. P., Grove T. L. Experimental and Natural Partitioning of Th, U, Pb and Other Trace Elements between Garnet, Clinopyroxene and Basaltic Melts. Chemical Geology, 1994, 117(1/2/3/4): 149-166.

[33]

Hesse K. T., Gose J., Stalder R., . Water in Orthopyroxene from Abyssal Spinel Peridotites of the East Pacific Rise (ODP Leg 147: Hess Deep). Lithos, 2015, 232(6): 23-34.

[34]

Hirschmann M. M. Water, Melting, and the Deep Earth H2O Cycle. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 629-653.

[35]

Hirschmann M. M., Tenner T., Aubaud C., . Dehydration Melting of Nominally Anhydrous Mantle: The Primacy of Partitioning. Physics of the Earth and Planetary Interiors, 2009, 176(1/2): 54-68.

[36]

Hirth G., Kohlstedt D. L. Water in the Oceanic Upper Mantle: Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere. Earth and Planetary Science Letters, 1996, 144(1/2): 93-108.

[37]

Hochstaedter A. G., Gill J. B., Kusakabe M., . Volcanism in the Sumisu Rift, I. Major Element, Volatile, and Stable Isotope Geochemistry. Earth and Planetary Science Letters, 1990, 100(1/2/3): 179-194.

[38]

Ingrin J., Skogby H. Hydrogen in Nominally Anhydrous Upper-Mantle Minerals: Concentration Levels and Implications. European Journal of Mineralogy, 2000, 12(3): 543-570.

[39]

Javoy M., Pineau F. A., gre C. J. Carbon Geodynamic Cycle. Nature, 1982, 300(5888): 171-173.

[40]

Johnson K. T. M. Experimental Determination of Partition Coefficients for Rare Earth and High-Field-Strength Elements between Clinopyroxene, Garnet, and Basaltic Melt at High Pressures. Contributions to Mineralogy and Petrology, 1998, 133(1/2): 60-68.

[41]

Jung H., Karato S.-I. Water-Induced Fabric Transitions in Olivine. Science, 2001, 293(5534): 1460-1463.

[42]

Kamenetsky V. S., Eggins S. M., Crawford A. J., . Calcic Melt Inclusions in Primitive Olivine at 43°N MAR: Evidence for Melt-Rock Reaction/Melting Involving Clinopyroxene-Rich Lithologies during MORB Generation. Earth and Planetary Science Letters, 1998, 160(1/2): 115-132.

[43]

Katz R. F., Spiegelman M., Langmuir C. H. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 2003, 4 9 1073

[44]

Kent A. J. R. Melt Inclusions in Basaltic and Related Volcanic Rocks. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 273-331.

[45]

Kinzler R. J. Melting of Mantle Peridotite at Pressures Approaching the Spinel to Garnet Transition: Application to Mid-Ocean Ridge Basalt Petrogenesis. Journal of Geophysical Research: Solid Earth, 1997, 102(B1): 853-874.

[46]

Klein E. M., Langmuir C. H. Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth and Crustal Thickness. Journal of Geophysical Research, 1987, 92 B8 8089

[47]

Koleszar A. M., Saal A. E., Hauri E. H., . The Volatile Contents of the Galapagos Plume; Evidence for H2O and F Open System Behavior in Melt Inclusions. Earth and Planetary Science Letters, 2009, 287(3/4): 442-452.

[48]

Kovács I., Hermann J., O’Neill H. S. C., . Quantitative Absorbance Spectroscopy with Unpolarized Light: Part II. Experimental Evaluation and Development of a Protocol for Quantitative Analysis of Mineral IRSpectra. American Mineralogist, 2008, 93(5/6): 765-778.

[49]

le Roux P., le Roex A., Schilling J. G. MORB Melting Processes beneath the Southern Mid-Atlantic Ridge (40–55°S): A Role for Mantle Plume-Derived Pyroxenite. Contributions to Mineralogy and Petrology, 2002, 144(2): 206-229.

[50]

Li J., Jian H., Chen Y. J., . Seismic Observation of an Extremely Magmatic Accretion at the Ultraslow Spreading Southwest Indian Ridge. Geophysical Research Letters, 2015, 42(8): 2656-2663.

[51]

Li Z. X. A., Lee C. T. A., Peslier A. H., . Water Contents in Mantle Xenoliths from the Colorado Plateau and Vicinity: Implications for the Mantle Rheology and Hydration-Induced Thinning of Continental Lithosphere. Journal of Geophysical Research, 2008, 113 B9 22

[52]

Ligi M., Bonatti E., Cipriani A., . Water-Rich Basalts at Mid-Ocean-Ridge Cold Spots. Nature, 2005, 434(7029): 66-69.

[53]

Liu Y., Hu Z., Gao S., . In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 342-43.

[54]

McDonough W. F., Ireland T. R. Intraplate Origin of Komatiites Inferred from Trace Elements in Glassinclusions. Nature, 1993, 365(6445): 432-434.

[55]

McKenzie D. P., Bickle M. J. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 1988, 29(3): 625-679.

[56]

Métrich N., Zanon V., Creon L., . Is the ‘Azores Hotspot’ a Wetspot? Insights from the Geochemistry of Fluid and Melt Inclusions in Olivine of Pico Basalts. Journal of Petrology, 2014, 55(2): 377-393.

[57]

Meyzen C. M., Toplis M. J., Humler E., . A Discontinuity in Mantle Composition beneath the Southwest Indian Ridge. Nature, 2003, 421(6924): 731-733.

[58]

Michael P. J. The Concentration, Behavior and Storage of H2O in the Suboceanic Upper Mantle: Implications for Mantle Metasomatism. Geochimica et Cosmochimica Acta, 1988, 52(2): 555-566.

[59]

Michael P. J. Regionally Distinctive Sources of Depleted MORB: Evidence from Trace Elements and H2O. Earth and Planetary Science Letters, 1995, 131(3/4): 301-320.

[60]

Nichols A. R. L., Carroll M. R., Höskuldsson. Is the Iceland Hot Spot also Wet? Evidence from the Water Contents of Undegassed Submarine and Subglacial Pillow Basalts. Earth and Planetary Science Letters, 2002, 202(1): 77-87.

[61]

Niu X. W., Ruan A. G., Li J. B., . Along-Axis Variation in Crustal Thickness at the Ultraslow Spreading Southwest Indian Ridge (50°E) from a Wide-Angle Seismic Experiment. Geochemistry, Geophysics, Geosystems, 2015, 16(2): 468-485.

[62]

O’Leary J. A., Gaetani G. A., Hauri E. H. The Effect of Tetrahedral Al3+ on the Partitioning of Water between Clinopyroxene and Silicate Melt. Earth and Planetary Science Letters, 2010, 297(1/2): 111-120.

[63]

Peslier A. H., Luhr J. F., Post J. Low Water Contents in Pyroxenes from Spinel-Peridotites of the Oxidized, Sub-Arc Mantle Wedge. Earth and Planetary Science Letters, 2002, 201(1): 69-86.

[64]

Peslier, A. H., Snow, J. E., Hellebrand, E., et al., 2007. Low Water Contents in Minerals from Gakkel Ridge Abyssal Peridotites, Arctic Ocean. Goldschmidt Conference, Cologne. A779

[65]

Plank T., Kelley K. A., Zimmer M. M., . Why do Mafic Arc Magmas Contain ~4 wt.% Water on Average?. Earth and Planetary Science Letters, 2013, 364(26): 168-179.

[66]

Robinson C. J., Bickle M. J., Minshull T. A., . Low Degree Melting under the Southwest Indian Ridge: The Roles of Mantle Temperature, Conductive Cooling and Wet Melting. Earth and Planetary Science Letters, 2001, 188(3/4): 383-398.

[67]

Rommevaux-Jestin C., Deplus C., Patriat P. Mantle Bouguer Anomaly along an Ultra Slow-Spreading Ridge: Implications for Accretionary Processes and Comparison with Results from Central Mid-Atlantic Ridge. Marine Geophysical Researches, 1997, 19(6): 481-503.

[68]

Saal A. E., Hauri E. H., Langmuir C. H., . Vapour Undersaturation in Primitive Mid-Ocean-Ridge Basalt and the Volatile Content of Earth’s Upper Mantle. Nature, 2002, 419(6906): 451-455.

[69]

Sauter D., Cannat M. The Ultraslow Spreading Southwest Indian Ridge Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Geophysical Monograph Series, 2010, 188: 153-173.

[70]

Sauter D., Cannat M., Meyzen C., . Propagation of a Melting Anomaly along the Ultraslow Southwest Indian Ridge between 46°E and 52°20’E: Interaction with the Crozet Hotspot?. Geophysical Journal International, 2009, 179(2): 687-699.

[71]

Seyler M., Cannat M. M., vel C. Evidence for Major-Element Heterogeneity in the Mantle Source of Abyssal Peridotites from the Southwest Indian Ridge (52° to 68°E). Geochemistry, Geophysics, Geosystems, 2003, 4 2 9101

[72]

Shaw A. M., Behn M. D., Humphris S. E., . Deep Pooling of Low Degree Melts and Volatile Fluxes at the 85°E Segment of the Gakkel Ridge: Evidence from Olivine-Hosted Melt Inclusions and Glasses. Earth and Planetary Science Letters, 2010, 289(3/4): 311-322.

[73]

Simons K., Dixon J., Schilling J. G., . Volatiles in Basaltic Glasses from the Easter-Salas y Gomez Seamount Chain and Easter Microplate: Implications for Geochemical Cycling of Volatile Elements. Geochemistry, Geophysics, Geosystems, 2002, 3(7): 1-29.

[74]

Sisson T. W., Layne G. D. H2O in Basalt and Basaltic Andesite Glass Inclusions from Four Subduction-Related Volcanoes. Earth and Planetary Science Letters, 1993, 117(3/4): 619-635.

[75]

Skogby H., Bell D. R., Rossman G. R. Hydroxide in Pyroxene: Variations in the Natural-Environment. American Mineralogist, 1990, 75(7/8): 764-774.

[76]

Skogby H., Rossman G. R. OH in Pyroxene: An Experimental Study of Incorporation Mechanisms and Stability. American Mineralogist, 1989, 74: 1059-1069.

[77]

Smith W. H. F., Sandwell D. T. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science, 1997, 277(5334): 1956-1962.

[78]

Sobolev A. V., Chaussidon M. H2O Concentrations in Primary Melts from Supra-Subduction Zones and Mid-Ocean Ridges: Implications for H2O Storage and Recycling in the Mantle. Earth and Planetary Science Letters, 1996, 137(1/2/3/4): 45-55.

[79]

Sobolev A. V., Hofmann A. W., Kuzmin D. V., . The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 2007, 316(5823): 412-417.

[80]

Stolper E., Newman S. The Role of Water in the Petrogenesis of Mariana Trough Magmas. Earth and Planetary Science Letters, 1994, 121(3/4): 293-325.

[81]

Sundvall R., Stalder R. Water in Upper Mantle Pyroxene Megacrysts and Xenocrysts: A Survey Study. American Mineralogist, 2011, 96(8/9): 1215-1227.

[82]

Tenner T. J., Hirschmann M. M., Withers A. C., . H2O Storage Capacity of Olivine and Low-Ca Pyroxene from 10 to 13 GPa: Consequences for Dehydration Melting above the Transition Zone. Contributions to Mineralogy and Petrology, 2012, 163(2): 297-316.

[83]

Wallace P. J. Water and Partial Melting in Mantle Plumes: Inferences from the Dissolved H2O Concentrations of Hawaiian Basaltic Magmas. Geophysical Research Letters, 1998, 25(19): 3639-3642.

[84]

Wallace P. J. Volatiles in Subduction Zone Magmas: Concentrations and Fluxes Based on Melt Inclusion and Volcanic Gas Data. Journal of Volcanology and Geothermal Research, 2005, 140(1/2/3): 217-240.

[85]

Wang Y. F., Jin Z. M., Shi F. Characteristics of Hydroxyl in Lherzolite from Different Geological Setting. Earth Science–Journal of China University of Geosciences, 2013, 38(3): 489-500.

[86]

Wanless V. D., Behn M. D., Shaw A. M., . Variations in Melting Dynamics and Mantle Compositions along the Eastern Volcanic Zone of the Gakkel Ridge: Insights from Olivine-Hosted Melt Inclusions. Contributions to Mineralogy and Petrology, 2014, 167(5): 1-22.

[87]

Wanless V. D., Shaw A. M. Lower Crustal Crystallization and Melt Evolution at Mid-Ocean Ridges. Nature Geoscience, 2012, 5(9): 651-655.

[88]

Wanless V. D., Shaw A. M., Behn M. D., . Magmatic Plumbing at Lucky Strike Volcano Based on Olivine-Hosted Melt Inclusion Compositions. Geochemistry, Geophysics, Geosystems, 2015, 16(1): 126-147.

[89]

Warren J. M., Hauri E. H. Pyroxenes as Tracers of Mantle Water Variations. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 1851-1881.

[90]

Warren J. M., Shimizu N. Cryptic Variations in Abyssal Peridotite Compositions: Evidence for Shallow-Level Melt Infiltration in the Oceanic Lithosphere. Journal of Petrology, 2010, 51(1/2): 395-423.

[91]

Warren J. M., Shimizu N., Sakaguchi C., . An Assessment of Upper Mantle Heterogeneity Based on Abyssal Peridotite Isotopic Compositions. Journal of Geophysical Research, 2009, 114 B12 B12203

[92]

White R. S., Minshull T. A., Bickle M. J., . Melt Generation at very Slow-Spreading Oceanic Ridges: Constraints from Geochemical and Geophysical Data. Journal of Petrology, 2001, 42(6): 1171-1196.

[93]

Workman R. K., Hart S. R. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 2005, 231(1/2): 53-72.

[94]

Xia Q. K., Bi Y., Li P., . High Water Content in Primitive Continental Flood Basalts. Scientific Reports, 2016, 6 1 25416

[95]

Xia Q. K., Liu J., Liu S. C., . High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications on the Destruction of Cratonic Mantle Lithosphere. Earth and Planetary Science Letters, 2013, 361: 85-97.

[96]

Yang A. Y., Zhao T. P., Zhou M. F., . Os Isotopic Compositions of MORBs from the Ultra-Slow Spreading Southwest Indian Ridge: Constraints on the Assimilation and Fractional Crystallization (AFC) Processes. Lithos, 2013, 179(11): 28-35.

[97]

Zhang G. L., Zong C. L., Yin X. B., . Geochemical Constraints on a Mixed Pyroxenite-Peridotite Source for East Pacific Rise Basalts. Chemical Geology, 2012, 330/331(4): 176-187.

[98]

Zhang Y. X., Zindler A. Distribution and Evolution of Carbon and Nitrogen in Earth. Earth and Planetary Science Letters, 1993, 117(3/4): 331-345.

[99]

Zhao M. H., Qiu X. L., Li J. B., . Three-Dimensional Seismic Structure of the Dragon Flag Oceanic Core Complex at the Ultraslow Spreading Southwest Indian Ridge (49°39’E). Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4544-4563.

[100]

Zhou H. Y., Dick H. J. B. Thin Crust as Evidence for Depleted Mantle Supporting the Marion Rise. Nature, 2013, 494(7436): 195-200.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/