Atacamite and nantokite in Kaerqueka copper deposit of Qimantag area: Evidence for Cenozoic climate evolution of the Qaidam Basin

Liwen Yi, Xiangping Gu, Anhuai Lu, Xiangyu Li, Dexian Zhang, Zhiling Wang, Jianping Liu, Shuai Li, Zhengxiang Shu, Cui Yu, Hongyan Zuo, Can Shen

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (3) : 492-499.

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (3) : 492-499. DOI: 10.1007/s12583-017-0548-8
Environmental Geochemistry

Atacamite and nantokite in Kaerqueka copper deposit of Qimantag area: Evidence for Cenozoic climate evolution of the Qaidam Basin

Author information +
History +

Abstract

Using a mineralogy method to reflect climate evolution is a new approach to research Cenozoic environmental progression of the Qaidam Basin. In this paper, we present the chemical composition and crystallographic parameter of atacamite, nantokite, and tenorite in cryptocrystalline aggregates from the Kaerqueka copper deposit of Qimantag metallogenic belt by means of electron microprobe and in-situ X-ray diffraction analyses. Atacamite and nantokite occur in an intimate intergrowth as the secondary precipitation of chalcopyrite and bornite filling in the interstitial space of andradite in the Kaerqueka copper deposit, with an average composition of Cl: 12.38 wt.% Cu: 63.76 wt.% O: 21.46 wt.% X-ray microdiffraction shows that the intergrowth contains nantokite with a cubic unit cell a=5.403(2) Å and atacamite with an orthorhombic unit cell a=6.030(3), b=6.883(2), c=9.114(1) Å XRD quantitative calculation shows that the nanometric aggregate contains 36.07 wt.% tenorite, 18.41 wt.% atacamite, and 45.52 wt.% nantokite. The presence of nantokite and atacamite requires saline solutions for their formation and hyper-arid climate conditions for their preservation. Combined with the data of salt lakes and the pollen sequence of western China, we suggest that during the uplift of the Tibetan Plateau and the retreat of the Paratethys, saline water was forced to the surface through a basal fracture zone. In the hyper-arid climate of the Qaidam Basin, the recharge of groundwater by direct precipitation is negligible, and groundwater is derived from inflow from the salt lakes. Thus, atacamite is preserved. In addition, spertiniite in the edge and fractures of atacamite and nantokite may represent wetter climate after the formation of atacamite and nantokite.

Keywords

atacamite / nantokite / climate evolution / Qaidam Basin

Cite this article

Download citation ▾
Liwen Yi, Xiangping Gu, Anhuai Lu, Xiangyu Li, Dexian Zhang, Zhiling Wang, Jianping Liu, Shuai Li, Zhengxiang Shu, Cui Yu, Hongyan Zuo, Can Shen. Atacamite and nantokite in Kaerqueka copper deposit of Qimantag area: Evidence for Cenozoic climate evolution of the Qaidam Basin. Journal of Earth Science, 2017, 28(3): 492‒499 https://doi.org/10.1007/s12583-017-0548-8

References

Bian Q., Zhao D., Ye Z., . A Preliminary Study of the Kunlun-Qilian-Qinling Suture System. Acta Geoscientia Sinica, 2002, 23: 501-508.
Broccoli A. J., Manabe S. The Effects of Orography on Midlatitude Northern Hemisphere Dry Climates. Journal of Climate, 1992, 5(11): 1181-1201.
CrossRef Google scholar
Cameron E. M., Leybourne M. I., Palacios C. Atacamite in the Oxide Zone of Copper Deposits in Northern Chile: Involvement of Deep Formation Waters?. Mineralium Deposita, 2007, 42(3): 205-218.
CrossRef Google scholar
Chávez W. X. Supergene Oxidation of Copper Deposits: Zoning and Distribution of Copper Oxide Minerals. Society of Economic Geologists, 2000, 41: 1-21.
Chen K. Z., Zhang P. X., Chen S. Z. The Evolution of Salt Genesis and the Characteristics of Sedimentary Down-Warping, in the Qaidam Basin, since the Neogene: A Preliminary Study of the Uplift of the Kunlun Mountains. Studies on the Period, Amplitude and Type of Uplift of the Qinghai-Xizang Plateau, 1981, Beijing: Science Press, 148-153.
Chen L. X., Ding Y. H. The Sustaining Mechanism of Asian Monsoon, Asian Monsoon, 1994, Beijing: Qixiang Press, 1-15.
Chen N. S., Li X. Y., Zhang K. X., . Lithological Characteristics of the Baishahe Formation South of Xiangride Town, Eastern Kunlun Mountains and Its Age Constrained from Zircon Pb-Pb Dating. Geological Science and Technology Information, 2006, 25(3): 1-7.
Chen Y. X., Pei X. Z., Li R. B., . Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 2011, 25: 510-521.
Feng C. Y., Zhao Y. M., Li D. X., . Skarn Types and Mineralogical Characteristics of the Fe-Cu-Polymetallic Skarn Deposits in the Qimantage Area, Western Qinghai Province. Acta Geologica Sinica, 2011, 85(7): 1108-1115.
Hahn D. G., Manabe S. The Role of Mountains in the South Asian Monsoon Circulation. Journal of the Atmospheric Sciences, 1975, 32(8): 1515-1541.
CrossRef Google scholar
Hannington M. D. The Formation of Atacamite during Weathering of Sulfides on the Modern Seafloor. Canadian Mineral, 1993, 31(4): 945-956.
Kutzbach J. E., Guetter P. J., Ruddiman W. F., . Sensitivity of Climate to Late Cenozoic Uplift in Southern Asia and the American West: Numerical Experiments. Journal of Geophysical Research, 1989, 94(D15): 18393-18407.
CrossRef Google scholar
Li, B., Jiang, S. Y., 2017. Genesis of the Giant Zijinshan Epithermal Cu-Au and Luoboling Porphyry Cu-Mo Deposits in the Zijinshan Ore District, Fujian Province, SEChina: A Multi-Isotope and Trace Element Investigation. Ore Geology Reviews. doi: 10.1016/j.oregeorev.2017.02.009
Li B., Jiang S. Y., Lu A. H., . Petrogenesis of Late Jurassic Granodiorites from Gutian, Fujian Province, South China: Implications for Multiple Magma Sources and Origin of Porphyry Cu-Mo Mineralization. Lithos, 2016, 264: 540-554.
CrossRef Google scholar
Li D. X., Feng C. Y., Zhao Y. M., . Mineralization and Alteration Types and Skarn Mineralogy of Kaerqueka Copper Polymetallic Deposit in Qinghai Province. Journal of Jilin Univcrsity (Earth Science Edition), 2011, 41(6): 1818-1930.
Liu Q. Q., Li B., Shao Y. J., . Molybdenum Mineralization Related to the Yangtze’s Lower Crust and Differentiation in the Dabie Orogen: Evidence from the Geochemical Features of the Yaochong Porphyry Mo Deposit. Lithos, 2017, 282/283: 111-127.
CrossRef Google scholar
Liu X. Application of Numerical Simulation to Paleoclimatic Research. Scientia Geographica Sinica, 1993, 13(3): 257-267.
Lu S. N., Li H. K., Wang H. C., . Detrital Zircon Population of Proterozoic Metasedimentary Strata in the Qinling- Qilian-Kunlun Orogen. Acta Petrologica Sinica, 2009, 25: 2195-2208.
MacFarlane W. R., Kyser T. K., Chipley D., . Continuous Leach Inductively Coupled Plasma Mass Spectrometry: Applications for Exploration and Environmental Geochemistry. Geochemistry: Exploration, Environment, Analysis, 2005, 5(2): 123-134.
Manabe S., Broccoli A. J. Mountains and Arid Climates of Middle Latitudes. Science, 1990, 247(4939): 192-195.
CrossRef Google scholar
Manabe S., Terpstra T. B. The Effects of Mountains on the General Circulation of the Atmosphere as Identified by Numerical Experiments. Journal of the Atmospheric Sciences, 1974, 31(1): 3-42.
CrossRef Google scholar
Meng F. C., Zhang J. X., Cui M. H. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and its Tectonic Significance. Gondwana Research, 2013, 23(2): 825-836.
CrossRef Google scholar
Palache C., Berman H., Frondel C. Dana’s System of Mineralogy, 1951, New York: John Wiley & Sons, Inc., 18-19.
Parise J. B., Hyde B. G. The Structure of Atacamite and Its Relationship to Spinel. Acta Crystallographica Section C: Crystal Structure Communications, 1986, 42(10): 1277-1280.
Ramstein G., Fluteau F., Besse J., . Effect of Orogeny, Plate Motion and Land-Sea Distribution on Eurasian Climate Change over the Past 30 Million Years. Nature, 1997, 386(6627): 788-795.
CrossRef Google scholar
Reich M., Palacios C., Parada M. A., . Atacamite Formation by Deep Saline Waters in Copper Deposits from the Atacama Desert, Chile: Evidence from Fluid Inclusions, Groundwater Geochemistry, TEM, and 36Cl Data. Mineralium Deposita, 2008, 43(6): 663-675.
CrossRef Google scholar
Ruddiman W. F., Kutzbach J. E. Forcing of Late Cenozoic Northern Hemisphere Climate by Plateau Uplift in Southern Asia and the American West. Journal of Geophysical Research, 1989, 94(D15): 18409-18427.
CrossRef Google scholar
Wang G. C., Wang Q. H., Jian P., . Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 2004, 11: 481-490.
Wang G. C., Wei Q. R., Jia C. X., . Some Ideas of Precambrian Geology in the East Kunlun, China. Geological Bulletin of China, 2007, 26: 929-937.
Wang H. Z. Paleogeographical Atlas of China, 1985, Beijing: China Mapping Press, 121-126.
Wang J., Huang Q. H., Liu Z. C. Tendency of the Quaternary Climatic Change in Qaidam Basin and Its Causal Mechanism. Scientia Geographica Sinica, 2002, 22(1): 34-38.
Wang J., Wang Y. J., Liu Z. C., . Cenozoic Environmental Evolution of the Qaidam Basin and Its Implications for the Uplift of the Tibetan Plateau and the Drying of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152: 37-47.
CrossRef Google scholar
Wang, P. X., 1997. Late Cenozoic Environmental Evolution in China: Marine Factors and Records. The Changing Face of East Asia during the Tertiary and the Quaternary. The University of Hong Kong, Hong Kong. 263–273 (in Chinese)
Wang S., Feng C. Y., Li S. J., . Zircon SHRIMP U-Pb Dating of Granodiorite in the Kaerqueka Polymetallic Ore Deposit, Qimantage Mountain, Qinghai Province, and Its Geological Implications. Geology in China, 2009, 36(1): 74-84.
Wang Y. S., Chen J. N. Metamorphic Zone and Metamorphism in Qinghai Province and Its Adjacent Areas, 1987, Beijing: Geological Publishing House, 1-248.
Woods T. L., Garrels R. M. Phase Relations of Some Cupric Hydroxy Minerals. Economic Geology, 1986, 81(8): 1989-2007.
CrossRef Google scholar
Wu Q. H., Cao J. Y., Kong H., . Petrogenesis and Tectonic Setting of the Early Mesozoic Xitian Granitic Pluton in the Middle Qin-Hang Belt, South China: Constraints from Zircon U-Pb Ages and Bulk-Rock Trace Element and Sr-Nd-Pb Isotopic Compositions. Journal of Asian Earth Sciences, 2016, 128: 130-148.
CrossRef Google scholar
Xu Z., Yang J., Li H., . The Early Paleozoic Terrane Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 2006, 80: 1793-1806.
Ye L., Liu T. G. The Discovery of Atacamite in Xinjiang and Its Significance. Acta Mineralogica Sinica, 1997, 17(1): 78-81.
Yi L. W., Gu X. P., Lu A. H., . Major and Trace Elements of Magnetite from the Qimantag Metallogenic Belt: Insights into Environment Evolution of Ore-Forming Fluids. Acta Geologica Sinica, 2015, 89(4): 1226-1243.
CrossRef Google scholar
Yin A. Geological Evolution of the Himalayan-Tibetan Orogen- Growth of Phanerozoic Asian Continent. Acta Geoscientia Sinica, 2001, 22: 193-230.
Zhao Y. M., Feng C. Y., Li D. X., . Metallogenic Setting and Mineralization-Alteration Characteristics of Major Skarn Fe-polymetallic Deposits in Qimantag Area, Western Qinghai Province. Mineral Deposits, 2013, 32(1): 1-19.
Zuo H. Y., Lu A. H., Gu X. P., . Typomorphic Feature of Chromium Sericite in Granite Hosted Gold Deposits in Jiaodong Peninsula, China. Applied Clay Science, 2016, 119: 49-58.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/