Age, genesis, and tectonic setting of the Mo-W mineralized Dongshanwan granite porphyry from the Xilamulun metallogenic belt, NE China

Xuebing Zhang , Keyong Wang , Chengyang Wang , Wen Li , Qi Yu , Yicun Wang , Jianfeng Li , Duo Wan , Guanghuan Huang

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (3) : 433 -446.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (3) : 433 -446. DOI: 10.1007/s12583-016-0934-1
Petrogeochemistry and Geochronology

Age, genesis, and tectonic setting of the Mo-W mineralized Dongshanwan granite porphyry from the Xilamulun metallogenic belt, NE China

Author information +
History +
PDF

Abstract

The Xilamulun molybdenum polymetallic metallogenic belt in eastern Inner Mongolia forms one of the most important Mo metallogenic belts in northeastern China. The Dongshanwan porphyry Mo-W polymetallic deposit, in the northeastern part of the Xilamulun metallogenic belt, occurs along the periphery of a granite porphyry and consists of Mo-W-Ag sulfide and oxide disseminations and veinlets in hydrothermal assemblages. LA-ICP-MS zircon U-Pb dating of the Dongshanwan granite porphyry yields a crystallization age of 142.15±0.91 Ma, whereas molybdenite Re-Os isotopic dating model ages are of 139.9-141.5 Ma and an isochron age is of 140.5±3.2 Ma (MSWD=1.2). The age consistency indicates that the Dongshanwan deposit was a product of Early Cretaceous magmatism. The Dongshanwan granite porphyry is a high-alkali high-potassium intrusion and has high SiO2 (75.39 wt.%-76.15 wt.%), low Al2O3 (12 wt.%-13 wt.%), Ba, Ti, P, and Sr contents, with negative Eu anomalies. The Y/Nb ratios are comparable to those of average continental crust and island arc basalts, corresponding to type-A2 granites. Our geochemical data indicate that the granite porphyry emplaced in an Early Cretaceous post-orogenic extensional environment following Mongol-Okhotsk oceanic subduction and subsequent continental collision.

Keywords

Dongshanwan porphyry Mo-W deposit / zircon U-Pb dating / Re-Os dating / geochemistry / Xilamulun metallogenic belt

Cite this article

Download citation ▾
Xuebing Zhang, Keyong Wang, Chengyang Wang, Wen Li, Qi Yu, Yicun Wang, Jianfeng Li, Duo Wan, Guanghuan Huang. Age, genesis, and tectonic setting of the Mo-W mineralized Dongshanwan granite porphyry from the Xilamulun metallogenic belt, NE China. Journal of Earth Science, 2017, 28(3): 433-446 DOI:10.1007/s12583-016-0934-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai L. A., Sun J. G., Zhang Y., . Genetic Type, Miner-Alization Epoch and Geodynamical Setting of Endogenous Copper Deposits in the Great Xing’an Range. Acta Petrologica Sinica, 2012, 28(2): 468-482.

[2]

Chen Z. G., Ghang L. C., Wu H. Y., . Geochemistry Study and Tectonic Background of A Style Host Granite in Nianzigou Molybdenum Deposit in Xilamulun Molybdenum Deposit in Xilamulun Molybdenum Metallogenic Belt, Inner Mongolia. Acta Petrologica Sinica, 2008, 24(4): 879-889.

[3]

Ding Q. F., Yan W., Zhang B. L. Sulfur- and Lead-Isotope Geochemistry of the Balugou Cu-Pb-Zn Skarn Deposit in the Wulonggou Area in the Eastern Kunlun Orogen, NWChina. Journal of Earth Science, 2016, 27(5): 740-750.

[4]

Du A. D., He H. L., Yin N. W. A Study of the Rheniumosmium Geochronometry of Molybdenites. Acta Geologica Sinica, 1994, 8(2): 171-181.

[5]

Du A. D., Qu W. J., Wang D. H., . Subgrain-Size Decoupling of Re and 187Os with in Molybdenite. Mineral Deposits, 2007, 26(5): 572-580.

[6]

Duan X. X., Zeng Q. D., Yang Y. H., . Triassic Magmatism and Mo Mineralization in Northeast China: Geochronological and Isotopic Constraints from the Laojiagou Porphyry Mo Deposit. International Geology Review, 2015, 57(1): 55-75.

[7]

Eby G. N. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 1990, 26(1/2): 115-134.

[8]

Eby G. N. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 1992, 20(7): 641-644.

[9]

Fu Z. R., Chen H. J. Geological Characteristics and Prospect of Mineral Exploration of Dongshanwan W-Sn-Be Deposit at Balinzuo County of Inner Mongolia. Journal of Guilin Institute of Technology, 2004, 24(2): 148-151.

[10]

Gou J., Sun D. Y., Zhao Z. H., . Zircon LA-ICP MSU-Pb Dating and Petrogenesis of Rhyolites in Baiyingaolao Formation from the Southern Manzhouli, Inner-Mongolia. Acta Petrologica Sinica, 2010, 25(1): 333-344.

[11]

Hassanen M. A. Post-Collision, A-Type Granites of Homrit Waggat Complex, Egypt: Petrological and Geochemical Constraints on Its Origin. Precambrian Research, 1997, 82(3): 211-236.

[12]

Hoskin P. W. O., Black L. P. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 2000, 18(4): 423-439.

[13]

Hou Z. Q. Porphyry Cu-Mo-Au Deposits: Some New Insights and Advances. Earth Science Frontiers, 2004, 1(3): 131-144.

[14]

Hou Z. Q., Mo X. X., Gao Y. F., . Adakite, A Possible Host Rock for Porphyry Copper Deposits: Case Studies of Porphyry Copper Belts in Tibetan Plateau and in Northern Chile. Mineral Deposits, 2003, 22(1): 1-12.

[15]

Hou Z. Q., Yang Z. M., Qu X. M., . The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 2009, 36(1): 25-51.

[16]

Hu Z. C., Gao S., Liu Y., . Signal Enhancement in Laser Ablation ICP-MS by Aaddition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093-1101.

[17]

Jahn B. M., Wu F. Y., Chen B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Geological Society of America Special Papers, 2000, 350(1/2): 181-193.

[18]

King P. L., Chappell B. W., Allen C. M., . Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 2001, 48(4): 501-514.

[19]

King P. L., White A. J. R., Chappell B. W., . Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 1997, 38(3): 371-391.

[20]

Kravchinsky V. A. C. J. P., Harbert W. P., . Evolution of the Mongol-Okhotsk Ocean as Constrained by New Palaeomagnetic Data from the Mongol-Okhotsk Suture Zone, Siberia. Geophysical Journal International, 2002, 148(1): 34-57.

[21]

Li J. F. Mineralization and Periphery Metallogenic Prediction of the Hongling Pb-Zn Polymetallic Deposit in Chifeng, Inner Mongoli, 2014, 100-103.

[22]

Li, J. Y., Mo, S. G., He, Z. J., 2004. The Timing of Crustal Sinistral Strike-Slip Movement in the Northern Great Khing’an Ranges and Its Constraint on Reconstruction of the Crustal Tectonic Evolution of NEChina and Adjacent Areas since the Mesozoic. Earth Science Frontiers 172(3–4): 223–249

[23]

Li Z. M., Huang H. L., Zhang Z., . The Exploration Report of the Dongshanwan Polymetal Deposit in Balinzuoqi, Inner Mogolia, 2010, 1-57.

[24]

Liu J. L., Sun F. Y., Lin B. L., . Geochronology, Geochemistry and Zircon Hf Isotope of Miantian Granodiorite Intrusion in Yanbian Region, Southern-Jinlin Province and Its Geological Significance. Earth Science–Journal of China University of Geosciences, 2015, 40(1): 49-60.

[25]

Liu J. M., Zhao Y., Sun Y. L., . Recognition of the Latest Permian to Early Triassic Cu-Mo Mineralization on the Northern Margin of the North China Block and Its Geological Significance. Gondwana Research, 2010, 17(1): 125-134.

[26]

Liu Y. S., Hu Z. C., Gao S., . In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1): 34-43.

[27]

Liu Y. S., Hu Z. C., Zong K. Q., . Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 2010, 55(15): 1535-1546.

[28]

Lowell J. D., Guilbert J. M. Lateral and Yertical Alteration- Mineralization Zoning in Porphyry Ore Deposits. Economic Geology, 1970, 65(4): 373-408.

[29]

Ludwig K. R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel, 2003, Berkeley: Berkeley Geochronology Center Special Publication, 1-70.

[30]

Ma X. H., Chen B., Lai Y., . Petrogenesis and Minerlization Choronology Study on the Aolunhua Porphyry Mo Deposit Inner Mongolia and Its Geological Implications. Acta Petrologica Sinica, 2009, 25(11): 2939-2950.

[31]

Mao J. W., Xie G. Q., Zhang Z. H., . Mesozoic Largescale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 2005, 21(1): 169-188.

[32]

Mao J. W., Zhao Z. C., Zhang Z. L., . Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 1999, 63(11): 1815-1818.

[33]

Meng E., Xu W. L., Yang D. B., . Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications. Acta Petrologica Sinica, 2011, 27(4): 1209-1226.

[34]

Meng Q. R. What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract?. Tectonophysics, 2003, 369(3): 155-174.

[35]

Miller C., Schuster R., Klötzli U., . Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 1999, 40(9): 1399-1424.

[36]

Nie F. J., Zhang W. Y., Du A. D., . Re-Os Isotopic Dating on Molybdenite Separates from the Xiaodonggou Porphyry Mo Deposit, Hexigten Qi, Inner Mongolia. Acta Geologica Sinica, 2007, 81(7): 898-904.

[37]

Peccerillo A., Taylor S. R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.

[38]

Richards J. P. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 2009, 37(3): 247-250.

[39]

Rickwood P. C. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 1989, 22(4): 247-263.

[40]

Shen P., Shen Y. C., Pan H. D., . Baogutu Porphyry Cu-Mo-Au Deposit, West Junggar, Northwest China: Petrology, Alteration, and Mineralization. Economic Geology, 2010, 105(5): 947-970.

[41]

Sillitoe R. H. Porphyry Copper Systems. Economic Geology, 2010, 105(1): 3-41.

[42]

Smoliar M. I., Walker R. J., Morgan J. W. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 1996, 271(5252): 1099-1102.

[43]

Sun S. S., McDonough W. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[44]

Wakita K., Metcalfe I. Ocean Plate Stratigraphy in East and Southeast Asia. Journal of Asian Earth Sciences, 2005, 24(6): 679-702.

[45]

Wang F., Zhou X. H., Zhang L. C., . Late Mesozoic Volcanism in the Great Xing’an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 2006, 251(1): 179-198.

[46]

Wang J. G., He Z. H., Xu W. L. Petrogenesis of Riebeckite Rhyolites in the Southern Da Hinggan Mts.: Geohronological and Geochemical Evidence. Acta Petrologica Sinica, 2013, 29(3): 853-863.

[47]

Wang L. T., Wang L. B., Wang Y. W. REE Geochemistry of the Huangguangliang Skarn Fe-Sn Deposit, Inner Mongolia. Acta Petrologica Sinica, 2002, 18(4): 575-584.

[48]

Watson E. B., Harrison T. M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 1983, 64(2): 295-304.

[49]

Whalen J. B., Currie K. L., Chappell B. W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.

[50]

Windley B. F., Alexeiev D., Xiao W. J., . Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 2007, 164(1): 31-47.

[51]

Wu F. Y., Li X. H., Yang J. H., . Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.

[52]

Wu F. Y., Sun D. Y., Zhang G. L., . Deep Geodynamics of Yanshan Movement. Geological Journal of China Universities, 2000, 6(3): 379-388.

[53]

Wu G., Chen Y. J., Sun F. Y., . Geochemistry of the Late Jurassic Granitoids in the Northern End Area of Da Hinggan Mountains and Their Geological and Prospecting Implications. Acta Petrologica Sinica, 2008, 24(4): 899-910.

[54]

Wu, H. Y., Zhang, L. C., Chen, Z. G., et al., 2008. Geochemistries, Tectonic Setting and Mineralization Potentiality of the Ore-Bearing Monzogranite in the Kulitu Molybdenum (Copper) Deposit of Xarmoron Metallogetic Belt, Inner Mongolra. Acta Petrologica Sinica 24(4): 867–878 (in Chinese with English Abstract)

[55]

Wu F. Y., Sun D. Y., Li H., . A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 2002, 187(1): 143-173.

[56]

Xin J. The Polymetallic Metallogenic Series and Exploration Modle in the Southeast of Inner Mongolia, 2013, Beijing: China University of Geosciences, 24-26.

[57]

Xu F., Ren Z. H., Zhang B. S. Geological Characteristics of the Dongshanwan Tungsten and Molybden Mine, Balinzou Qi, Inner Mongolia. Mineral Resource Geology, 2012, 26(1): 24-29.

[58]

Xu M. J., Xu W. L., Meng E., . LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Ergun Area, Northeastern Inner Mongolia. Geological Bulletin of China, 2011, 30(9): 1321-1338.

[59]

Xu W. L., Ji W. Q., Pei F. P., . Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NEChina: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 2009, 34(3): 392-402.

[60]

Xu W. L., Pei F. P., Wang F., . Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Science, 2013, 74: 167-193.

[61]

Zeng Q. D., Liu J. M., Chu S. X., . Re-Os and U-Pb Geochronology of the Duobaoshan Porphyry Cu-Mo-(Au) Deposit, Northeast China, and Its Geological Significance. Journal of Asian Earth Sciences, 2014, 79(2): 895-909.

[62]

Zeng Q. D., Liu J. M., Qin F., . Geochronology of the Xiaodonggou Porphyry Mo Deposit in Northern Margin of North China Craton. Resource Geology, 2010, 60(2): 192-202.

[63]

Zeng Q. D., Liu J. M., Zhang Z. L. Re-Os Geochronology of Porphyry Molybdenum Deposit in South Segment of Da Hinggan Mountains, Northeast China. Journal of Earth Science, 2010, 21(4): 392-401.

[64]

Zeng Q. D., Liu J. M., Zhang Z. L., . Ore-Forming Time of the Jiguanshan Porphyry Molybdenum Deposit, Northern Margin of North China Craton and the Indosinian Mineralization. Acta Petrologica Sinica, 2009, 25(2): 393-398.

[65]

Zeng Q. D., Liu J. M., Zhang Z. L., . Geology and Geochronology of the Xilamulun Molybdenum Metallogenic Belt in Eastern Inner Mongolia, China. International Journal of Earth Sciences, 2011, 100(8): 1791-1809.

[66]

Zeng Q. D., Sun Y., Chu S. X., . Geochemistry and Geochronology of the Dongshanwan Porphyry Mo-W Deposit, Northeast China: Implications for the Late Jurassic Tectonic Setting. Journal of Asian Earth Sciences, 2015, 97(2): 472-485.

[67]

Zeng Q. D., Sun Y., Duan X. X., . U-Pb and Re-Os Geochronology of the Haolibao Porphyry Mo-Cu Deposit, NEChina: Implications for a Late Permian Tectonic Setting. Geological Magazine, 2013, 150(6): 975-985.

[68]

Zeng Q. D., Yang J. H., Liu J. M., . Genesis of the Chehugou Mo-Bearing Granitic Complex on the Northern Margin of the North China Craton: Geochemistry, Zircon U-Pb Age and Sr-Nd-Pb Isotopes. Geological Magazine, 2012, 149(5): 753-767.

[69]

Zhang H. F., Parrish R., Zhang L., . A-Type Granite and Adakitic Magmatism Association in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Implication for Lithospheric Delamination. Lithos, 2007, 97(3): 323-335.

[70]

Zhang J. H. Chronology and Geochemistry of the Mesozoic Volcanic Rocks in the Great Xin’an Range Northeastern China, 2009, Wuhan: China University of Geosciences, 40-56.

[71]

Zhang J. H., Gao S., Ge W. C., . Geochronology of the Mesozoic Volcanic Rocks in the Great Xing’an Range, Northeast China: Implications for Subduction-Induced Delamination. Chemical Geology, 2010, 276(3): 144-165.

[72]

Zhang J. H., Ge W. C., Wu F. Y., . Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing’an Range, Northeastern China. Lithos, 2008, 102(1): 138-157.

[73]

Zhang K. X., Pan G. T., He W. H., . New Division of Tectonic-Strata Superregion in China. Earth Science–Journal of China University of Geosciences, 2016, 40(2): 206-233.

[74]

Zhang L. C., Wu H. Y., Xiang P., . Ore-Forming Processes and Mineralization of Complex Tectonic System during the Mesozoic: A Case from Xilamulun Cu-Mo Metallogenic Belt. Acta Petrologica Sinica, 2010, 26(5): 1351-1362.

[75]

Zhang Q., Ran H., Li C. D. A-Type Granite: What is the Essence?. Atca Petrologica Mineralogica, 2012, 31(4): 621-626.

[76]

Zhang Y. Q., Dong S. W., Zhao Y., . Jurassic Tectonics of North China: A Synthetic View. Acta Petrologica Sinica, 2008, 82(2): 310-326.

[77]

Zhang Z. L., Zeng Q. D., Qu W. J., . The Molybdenite Re-Os Dating from the Nianzigou Mo Deposit, Inner Mongolia and its Geologial Significance. Acta Petrologica Sinica, 2009, 25(1): 212-218.

[78]

Zhao Y. M., Zhang D. Q. Inner Mongolia Southeast of Copper Polymetallic Mineralization Geological Conditions and Prospecting Mode, 1994, Beijing: Earthquake Press, 1-722.

[79]

Zhao Y., Yang Z. N., Ma X. H. Geotectonic Transition from Paleoasian System and Paleotethyan System to Paleopacific Active Continental Margin in Eastern Asia. Scientia Geologica Sinica, 1994, 29(2): 105-119.

[80]

Zhou Z. H., L. S., Yang Y. J., . Petrogenesis of the Early Cretaceous A-Type Granite in the Huanggang Sn-Fe Deposit, Inner Mongolia: Constraints from Zircon U-Pb Dating and Geochemistry. Acta Petrologica Sinica, 2010, 26(3): 667-669.

[81]

Zhu Y., An F., Feng W., . Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. Journal of Earth Science, 2016, 27(3): 491-506.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/