Genesis and implications of the composition and sedimentary structure of fine-grained carbonate rocks in the Shulu sag

Xiangxin Kong , Zaixing Jiang , Chao Han , Lijing Zheng , Yiming Zhang , Ruifeng Zhang , Jianzhang Tian

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (6) : 1047 -1063.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (6) : 1047 -1063. DOI: 10.1007/s12583-016-0927-x
Article

Genesis and implications of the composition and sedimentary structure of fine-grained carbonate rocks in the Shulu sag

Author information +
History +
PDF

Abstract

Fine-grained carbonate rocks, which extensively occur in the Eocene strata in the Shulu sag, Bohai Bay Basin, North China, represent an unconventional, fine-grained carbonate reservoir. However, previous studies have ignored the complexity of the lithofacies components and their formation mechanisms. Fine-grained carbonate rocks are typical reservoirs in which hydrocarbons form and gather. A better understanding of the nature of these rocks is extremely important for evaluating the quality of unconventional, fine-grained carbonate reservoirs. Various lithofacies components were discriminated in this study with a combination of petrographic observations and carbon isotope analyses. These finegrained carbonate rocks comprise terrigenous, biogenic and diagenetic materials. Terrigenous input and biologically induced precipitation are the main sources of the materials in the lake. Five lithofacies were identified based on the observations of sedimentary features (core and thin section) and mineralogical data: (1) varve-like laminated calcilutite, (2) graded laminated calcilutite, (3) interlaminated calcisiltitecalcilutite, (4) massive calcilutite, and (5) massive calcisiltite-calcarenite. Their origins were recorded by various lithofacies components, which are controlled by the interactions of physical, chemical and biological processes. This study indicated that the lithology of the bedrocks was the key factor controlling carbonate accumulation. The tectonics and climate can influence the weathering and types of lithofacies. Primary productivity controlled the precipitation of the endogenic calcite. These factors jointly determined the abundant fine-grained carbonate rocks that have accumulated in the Shulu sag.

Keywords

fine-grained carbonate rocks / terrigenous materials / biologically induced precipitation / varve / carbon isotope / massive calcilutite

Cite this article

Download citation ▾
Xiangxin Kong, Zaixing Jiang, Chao Han, Lijing Zheng, Yiming Zhang, Ruifeng Zhang, Jianzhang Tian. Genesis and implications of the composition and sedimentary structure of fine-grained carbonate rocks in the Shulu sag. Journal of Earth Science, 2017, 28(6): 1047-1063 DOI:10.1007/s12583-016-0927-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anadón P., Utrilla R., Vázquez A. Use of Charophyte Carbonates as Proxy Indicators of Subtle Hydrological and Chemical Changes in Marl Lakes: Example from the Miocene Bicorb Basin, Eastern Spain. Sedimentary Geology, 2000, 133(3/4): 325-347.

[2]

Anderson R. Y. The Varve Microcosm: Propagator of Cyclic Bedding. Paleoceanography, 1986, 1(4): 373-382.

[3]

Anderson R. Y., Dean W. E. Lacustrine Varve Formation through Time. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62(1–4): 215-235.

[4]

Aplin A. C., Macquaker J. H. S. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 2011, 95(12): 2031-2059.

[5]

Beck C. Late Quaternary Lacustrine Paleo-Seismic Archives in North-Western Alps: Examples of Earthquake-Origin Assessment of Sedimentary Disturbances. Earth-Science Reviews, 2009, 96(4): 327-344.

[6]

Behrens E. W. Unifite Muds in Intraslope Basins, Northwest Gulf of Mexico. Geo-Marine Letters, 1984, 4(3/4): 227-233.

[7]

Bright J., Kaufman D. S., Forester R. M., . A Continuous 250 000 yr Record of Oxygen and Carbon Isotopes in Ostracode and Bulk-Sediment Carbonate from Bear Lake, Utah-Idaho. Quaternary Science Reviews, 2006, 25(17/18): 2258-2270.

[8]

Bustillo M. A., Alonso-Zarza A. M. Overlapping of Pedogenesis and Meteoric Diagenesis in Distal Alluvial and Shallow Lacustrine Deposits in the Madrid Miocene Basin, Spain. Sedimentary Geology, 2007, 198(3/4): 255-271.

[9]

Casado A. I., Alonso-Zarza A. M., la Iglesia. Morphology and Origin of Dolomite in Paleosols and Lacustrine Sequences. Examples from the Miocene of the Madrid Basin. Sedimentary Geology, 2014, 312(10): 50-62.

[10]

Chafetz H. S. Porosity in Bacterially Induced Carbonates: Focus on Micropores. AAPG Bulletin, 2013, 97(11): 2103-2111.

[11]

Chang C. Y. Geological Characteristics and Distribution Patterns of Hydrocarbon Deposits in the Bohai Bay Basin, East China. Marine and Petroleum Geology, 1991, 8(1): 98-106.

[12]

Chang T. S., Chun S. S. Micro-Characteristics of Sustained, Fine-Grained Lacustrine Turbidites in the Cretaceous Hwangsan Tuff, SW Korea. Geosciences Journal, 2012, 16(4): 409-420.

[13]

Charles M. J., Simmons M. S. Methods for the Determination of Carbon in Soils and Sediments: A Review. The Analyst, 1986, 111 4 385

[14]

Cita, M., 2008. Deep-Sea Homogenites: Sedimentary Expression of a Prehistoric Megatsunami in the Eastern Mediterranean. In: Shiki, T., Tsuji, Y., Minoura, K., eds., Tsunamiites—Features and Implications. Elsevier, Amsterdam. 185–202

[15]

Cobbold P. R., Zanella A., Rodrigues N., . Bedding-Parallel Fibrous Veins (Beef and Cone-in-Cone): Worldwide Occurrence and Possible Significance in Terms of Fluid Overpressure, Hydrocarbon Generation and Mineralization. Marine and Petroleum Geology, 2013, 43(4): 1-20.

[16]

Day-Stirrat R. J., Dutton S. P., Milliken K. L., . Fabric Anisotropy Induced by Primary Depositional Variations in the Silt: Clay Ratio in Two Fine-Grained Slope Fan Complexes: Texas Gulf Coast and Northern North Sea. Sedimentary Geology, 2010, 226(1/2/3/4): 42-53.

[17]

Dean W. E. Carbonate Minerals and Organic Matter in Sediments of Modern North Temperate Hard-Water Lakes. SEPM Special Publication, 1981, 31: 213-231.

[18]

Dean W., Rosenbaum J., Skipp G., . Unusual Holocene and Late Pleistocene Carbonate Sedimentation in Bear Lake, Utah and Idaho, USA. Sedimentary Geology, 2006, 185(1/2): 93-112.

[19]

Dittrich M., Kurz P., Wehrli B. The Role of Autotrophic Picocyanobacteria in Calcite Precipitation in an Oligotrophic Lake. Geomicrobiology Journal, 2004, 21(1): 45-53.

[20]

Dittrich M., Müller B., Mavrocordatos D., . Induced Calcite Precipitation by Cyanobacterium Synechococcus. Acta Hydrochimica et Hydrobiologica, 2003, 31(2): 162-169.

[21]

Flügel E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, 2004, 314-321

[22]

Fourmont A., Macaire J. J., Bréhéret J. G. Contrasted Late Glacial and Holocene Hydrology of Sarliève Paleolake (France) from Sediment Geometry and Detrital Versus Biochemical Composition. Journal of Paleolimnology, 2009, 41(3): 471-490.

[23]

Francus P. v S. H. D. M., . Varved Sediments of Lake Yoa (Ounianga Kebir, Chad) Reveal Progressive Drying of the Sahara during the Last 6 100 Years. Sedimentology, 2013, 60(4): 911-934.

[24]

Freytet P., Verrecchia E. P. Lacustrine and Palustrine Carbonate Petrography: An Overview. Journal of Paleolimnology, 2002, 27(2): 221-237.

[25]

Garcés B. L. V., Gierlowski-Kordesch E. H. Lacustrine Carbonate Deposition in Middle Pennsylvanian Cyclothems? The Upper Freeport Formation, Appalachian Basin, USA. Journal of Paleolimnology, 1994, 11(1): 109-132.

[26]

Gierlowski-Kordesch E. H. Carbonate Deposition in an Ephemeral Siliciclastic Alluvial System: Jurassic Shuttle Meadow Formation, Newark Supergroup, Hartford Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 140(1/2/3/4): 161-184.

[27]

Gierlowski-Kordesch E. H. Lacustrine Carbonates. Developments in Sedimentology, 2010, 61(1): 1-101.

[28]

Glenn, C., Kelts, K., 1991. Sedimentary Rhythms in Lake Deposits. In: Einsele, G., Ricken, W., Seilacher, A., eds., Cycles and Events in Stratigraphy. Springer, Berlin. 188–221

[29]

Griffiths S. J., Street-Perrott F. A., Holmes J. A., . Chemical and Isotopic Composition of Modern Water Bodies in the Lake Kopais Basin, Central Greece: Analogues for the Interpretation of the Lacustrine Sedimentary Sequence. Sedimentary Geology, 2002, 148(1/2): 79-103.

[30]

Han C., Tian J. Z. Z. R., . Reservoir Space Types and Its Genesis in Tight Calcilutite Rudstone Reservoir of the Lower Part of Member 3 of Shahejie Formation, Shulu Sag. Acta Petrolei Sinica, 2015, 36(B11): 31-39.

[31]

Hargrave J. E., Hicks M. K., Scholz C. A. Lacustrine Carbonates from Lake Turkana, Kenya: A Depositional Model of Carbonates in an Extensional Basin. Journal of Sedimentary Research, 2014, 84(3): 224-237.

[32]

Hilfinger M. F. I., Mullins H. T., Burnett A., . A 2 500 year Sediment Record from Fayetteville Green Lake, New York: Evidence for Anthropogenic Impacts and Historic Isotope Shift. Journal of Paleolimnology, 2001, 26(3): 293-305.

[33]

Hodell D. A., Schelske C. L., Fahnenstiel G. L., . Biologically Induced Calcite and Its Isotopic Composition in Lake Ontario. Limnology and Oceanography, 1998, 43(2): 187-199.

[34]

Huang C. Y., Zhang J. C., Wang H., . Lacustrine Shale Deposition and Variable Tectonic Accommodation in the Rift Basins of the Bohai Bay Basin in Eastern China. Journal of Earth Science, 2015, 26(5): 700-711.

[35]

Jarvie D. M. Shale Resource Systems for Oil and Gas: Part 1—Shale- Gas Resource Systems. AAPG Memoir, 2012, 97: 69-87.

[36]

Jarvie D. M. Shale Resource Systems for Oil and Gas: Part 2—Shale- Oil Resource Systems. AAPG Memoir, 2012, 97: 89-119.

[37]

Jiang Z. X., Chen D. Z., Qiu L. W., . Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China. Sedimentology, 2007, 54(2): 265-292.

[38]

Jiang Z. X., Li Q. Reservoir Characteristics and Evaluation Methods of Tight Lacustrine Carbonates: Example from Shulu Sag in Bohai Bay, China, 2013.

[39]

Jiang Z. X., Liang C., Wu J., . Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.

[40]

Jiang Z. X., Zhang W., Liang C., . Characteristics and Evaluation Elements of Shale Oil Reservoir. Acta Petrolei Sinica, 2014, 35(1): 184-196.

[41]

Jin Z., Zhou Y., Zhang X. Lacustrine Carbonate Sedimentary Facies of the Shahejie Formation of Paleogene in Huanghua Depression. Journal of Paleolimnology, 2002, 4(3): 11-18.

[42]

Jones, B. F., Bowser, C. J., 1978. The Mineralogy and Related Chemistry of Lake Sediments. In: Baccini, P., ed., Lakes: Chemistry, Geology, Physics. Springer, New York. 179–235

[43]

Kelts, K., Hsü, K., 1978. Freshwater Carbonate Sedimentation. In: Baccini, P., ed., Lakes: Chemistry, Geology, Physics. Springer, New York. 295–323

[44]

Kelts, K., Talbot, M., 1990. Lacustrine Carbonates as Geochemical Archives of Environmental Change and Biotic/Abiotic Interactions. In: Tilzer, M. M., Serruya, C., eds. Large Lakes: Ecological Structure and Function. Springer, Berlin. 288–315. https://doi.org/10.1007/978-3-642-84077-7_15

[45]

Kong X. X., Jiang Z. X., Han C., . Laminations Characteristics and Reservoir Significance of Fine-Grained Carbonate in the Lower 3rd Member of Shahejie Formation of Shulu Sag. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 19-26.

[46]

Lambert A., Hsü K. J. Non-Annual Cycles of Varve-Like Sedimentation in Walensee, Switzerland. Sedimentology, 1979, 26(3): 453-461.

[47]

Lambert, A., Hsü, K., 1979b. Varve-Like Sediments of the Walensee. In: Schluchter, C., ed., Moraines and Varves. Balkema, Rotterdam. 295–302

[48]

Lazar O. R., Bohacs K. M., Macquaker J. H. S., . Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines. Journal of Sedimentary Research, 2015, 85(3): 230-246.

[49]

Lee C., McKenzie J. A., Sturm Z. M. Carbon Isotope Fractionation and Changes in the Flux and Composition of Particulate Matter Resulting from Biological Activity during a Sediment Trap Experiment in Lake Greifen, Switzerland. Limnology and Oceanography, 1987, 32(1): 83-96.

[50]

Leng M. J., Marshall J. D. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 2004, 23(7/8): 811-831.

[51]

Lincoln F., Pratson J. I. Abstract: Debris Flows Versus Turbidity Currents: A Modeling Comparison of Their Dynamics and Deposits. AAPG Bulletin, 2000, 84(2000): 57-72.

[52]

Loucks R. G., Reed R. M., Ruppel S. C., . Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79(12): 848-861.

[53]

Loucks R. G., Reed R. M., Ruppel S. C., . Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 2012, 96(6): 1071-1098.

[54]

Lu J. M., Ruppel S. C., Rowe H. D. Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale. AAPG Bulletin, 2015, 99(2): 333-357.

[55]

Macquaker J. H. S., Taylor K. G., Gawthorpe R. L. High-Resolution Facies Analyses of Mudstones: Implications for Paleoenvironmental and Sequence Stratigraphic Interpretations of Offshore Ancient Mud- Dominated Successions. Journal of Sedimentary Research, 2007, 77(4): 324-339.

[56]

Mcpherson J. G., Shanmugam G., Moiola R. J. Fan-Deltas and Braid Deltas: Varieties of Coarse-Grained Deltas. Geological Society of America Bulletin, 1987, 99 3 331

[57]

Milliken K. L., Rudnicki M., Awwiller D. N., . Organic Matter- Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 2013, 97(2): 177-200.

[58]

Milliken K. A Compositional Classification for Grain Assemblages in Fine-Grained Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 2014, 84(12): 1185-1199.

[59]

Morellón M., Valero-Garcés B., Anselmetti F., . Late Quaternary Deposition and Facies Model for Karstic Lake Estanya (North-Eastern Spain). Sedimentology, 2009, 56(5): 1505-1534.

[60]

Mulder T., Syvitski J. P. M., Migeon S., . Marine Hyperpycnal Flows: Initiation, Behavior and Related Deposits: A Review. Marine and Petroleum Geology, 2003, 20(6/7/8): 861-882.

[61]

Mulder T., Zaragosi S., Razin P., . A New Conceptual Model for the Deposition Process of Homogenite: Application to a Cretaceous Megaturbidite of the Western Pyrenees (Basque Region, SW France). Sedimentary Geology, 2009, 222(3/4): 263-273.

[62]

Mullins H. T. Environmental Change Controls of Lacustrine Carbonate, Cayuga Lake, New York. Geology, 1998, 26 5 443

[63]

Myrow P. M., Hiscott R. N. Shallow-Water Gravity-Flow Deposits, Chapel Island Formation, Southeast Newfoundland, Canada. Sedimentology, 1991, 38(5): 935-959.

[64]

Osleger D. A., Heyvaert A. C., Stoner J. S., . Lacustrine Turbidites as Indicators of Holocene Storminess and Climate: Lake Tahoe, California and Nevada. Journal of Paleolimnology, 2009, 42(1): 103-122.

[65]

Pacton M., Fiet N., Gorin G. E. Bacterial Activity and Preservation of Sedimentary Organic Matter: The Role of Exopolymeric Substances. Geomicrobiology Journal, 2007, 24(7/8): 571-581.

[66]

Platt N. H. Lacustrine Carbonates and Pedogenesis: Sedimentology and Origin of Palustrine Deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology, 1989, 36(4): 665-684.

[67]

Platt, N., Wright, V. P., 1991. Lacustrine Carbonates: Facies Models, Facies Distributions and Hydrocarbon Aspects. In: Anadón, P., Cabrera, Li., Kelts, K., eds., Lacustrine Facies Analysis. John Wiley & Sons, New York. 57–74

[68]

Pu X. G., Zhou L. H., Xiao D. Q., . Lacustrine Carbonates in the Southwest Margin of the Qikou Sag, Huanghua Depression, Bohai Bay Basin. Petroleum Exploration and Development, 2011, 38(2): 136-144.

[69]

Qiu L. W., Jiang Z. X., Liang H. B. Lime Mudstone—A Kind of Carbonate Rock of Terrigenous Mechanical Origin. Journal of China University of Petroleum, 2010, 34(6): 1-7.

[70]

Ramos-Guerrero E., Berrio I., Fornós J., . The Middle Miocene Son Verdera Lacustrine-Palustrine System (Santa Margalida Basin, Mallorca). AAPG Studies in Geology, 2000, 46: 441-448.

[71]

Ren Y. Q. Depositional Environments of Shulu Depression-Viewed from the Point of Micropaleobotanic Florae. Acta Sedimentologica Sinica, 1986, 4(4): 101-108.

[72]

Romero-Viana L., Julià R., Camacho A., . Climate Signal in Varve Thickness: Lake la Cruz (Spain), a Case Study. Journal of Paleolimnology, 2008, 40(2): 703-714.

[73]

Schieber J., Southard J. B., Schimmelmann A. Lenticular Shale Fabrics Resulting from Intermittent Erosion of Water-Rich Muds— Interpreting the Rock Record in the Light of Recent Flume Experiments. Journal of Sedimentary Research, 2010, 80(1): 119-128.

[74]

Soreghan, M. J., 1998. Facies Distributions within an Ancient Asymmetric Lake Basin: The Apache Canyon Formation, Bisbee Basin, Arizona. In: Pitman, J. K., Carroll, A. R., eds., Modern and Ancient Lake Systems. Utah Geological Assocociation Guidebook 26. C & M Press, Denver. 163–190

[75]

Stabel, H., 1985. Mechanisms Controlling the Sedimentation Sequence of Various Elements in Prealpine Lakes. In: Stumm, W., ed., Chemical Processes in Lakes. John Wiley and Sons, New York. 143–167

[76]

Stanley D. J. Unifites: Structureless Muds of Gravity-Flow Origin in Mediterranean Basins. Geo-Marine Letters, 1981, 1(2): 77-83.

[77]

Stow D. A. V., Bowen A. J. Origin of Lamination in Deep Sea, Fine-Grained Sediments. Nature, 1978, 274(5669): 324-328.

[78]

Stow D. A. V., Shanmugam G. Sequence of Structures in Fine-Grained Turbidites: Comparison of Recent Deep-Sea and Ancient Flysch Sediments. Sedimentary Geology, 1980, 25(1/2): 23-42.

[79]

Sturm M., Matter A. Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. International Association of Sedimentologists Special Publication, 1978, 2: 147-168.

[80]

Sumner E. J., Talling P. J., Amy L. A. Deposits of Flows Transitional between Turbidity Current and Debris Flow. Geology, 2009, 37(11): 991-994.

[81]

Talling P. J., Masson D. G., Sumner E. J., . Subaqueous Sediment Density Flows: Depositional Processes and Deposit Types. Sedimentology, 2012, 59(7): 1937-2003.

[82]

Taylor K. G., Macquaker J. H. S. Early Diagenetic Pyrite Morphology in a Mudstone-Dominated Succession: The Lower Jurassic Cleveland Ironstone Formation, Eastern England. Sedimentary Geology, 2000, 131(1/2): 77-86.

[83]

Teranes J. L., McKenzie J. A., Bernasconi S. M., . A Study of Oxygen Isotopic Fractionation during Bio-Induced Calcite Precipitation in Eutrophic Baldeggersee, Switzerland. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 1981-1989.

[84]

Tripsanas E. K., Bryant W. R., Phaneuf B. A. Depositional Processes of Uniform Mud Deposits (Unifites), Hedberg Basin, Northwest Gulf of Mexico: New Perspectives. AAPG Bulletin, 2004, 88(6): 825-840.

[85]

Tucker M. E., Wright V. P. Carbonate Sedimentology, 1990

[86]

Valero-Garcés B., Morellón M., Moreno A., . Lacustrine Carbonates of Iberian Karst Lakes: Sources, Processes and Depositional Environments. Sedimentary Geology, 2014, 299(2): 1-29.

[87]

Wang D., Feng X. Research on Carbon and Oxygen Geochemistry of Lower Paleozoic in North China. Acta Geologica Sinica—Chinese Edition, 2002, 76(3): 400-408.

[88]

Wang G. L., Wang T. G., Simoneit B. R. T., . Sulfur Rich Petroleum Derived from Lacustrine Carbonate Source Rocks in Bohai Bay Basin, East China. Organic Geochemistry, 2010, 41(4): 340-354.

[89]

Wilkin R. T., Barnes H. L., Brantley S. L. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.

[90]

Zha X. P., Zhao Y. Y., Zheng Y. F. An Online Method Combining a Gasbench II with Continuous Flow Isotope Ratio Mass Spectrometry to Determine the Content and Isotopic Compositions of Minor Amounts of Carbonate in Silicate Rocks. Rapid Communications in Mass Spectrometry, 2010, 24(15): 2217-2226.

[91]

Zhang J. G., Jiang Z. X., Jiang X. L., . Oil Generation Induces Sparry Calcite Formation in Lacustrine Mudrock, Eocene of East China. Marine and Petroleum Geology, 2016, 71(3): 344-359.

[92]

Zhang W. C., Cui Z. Q., Han C. Y., . Basin Evolution during Palaeogene and Petroleum Potentials of Central Hebei (Jizhong) Depression. Journal of Paleolimnology, 2001, 3(1): 45-54.

[93]

Zhang X. W., Scholz C. A. Turbidite Systems of Lacustrine Rift Basins: Examples from the Lake Kivu and Lake Albert Rifts, East Africa. Sedimentary Geology, 2015, 325(6): 177-191.

[94]

Zhao X. Z., Jiang Z. X., Zhang R. F., . Geological Characteristics and Exploration Practices of Special-Lithology Tight Oil Reservoirs in Continental Rift Basins: A Case Study of Tight Oil in Shahejie Formation, Shulu Sag. Acta Petrolei Sinica, 2015, 36(B11): 1-9.

[95]

Zhao X. Z., Li Q., Jiang Z. X., . Organic Geochemistry and Reservoir Characterization of the Organic Matter-Rich Calcilutite in the Shulu Sag, Bohai Bay Basin, North China. Marine and Petroleum Geology, 2014, 51(2): 239-255.

[96]

Zheng L. J., Jiang Z. X., Liu H., . Core Evidence of Paleoseismic Events in Paleogene Deposits of the Shulu Sag in the Bohai Bay Basin, East China, and Their Petroleum Geologic Significance. Sedimentary Geology, 2015, 328: 33-54.

[97]

Zolitschka B. Varved Lake Sediments, 2007, In: Saraswat, R, 3105-3114.

[98]

Zolitschka B., Francus P., Ojala A. E. K., . Varves in Lake Sediments—A Review. Quaternary Science Reviews, 2015, 117(6): 1-41.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/