The origin and tectonic significance of the volcanic rocks of the Yeba Formation in the Gangdese magmatic belt, South Tibet

Xuxuan Ma , Zhiqin Xu , Xijie Chen , Joseph G. Meert , Zhenyu He , Fenghua Liang , Yuanku Meng , Shiwei Ma

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (2) : 265 -282.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (2) : 265 -282. DOI: 10.1007/s12583-016-0925-8
Petrology and Petrogeochemistry

The origin and tectonic significance of the volcanic rocks of the Yeba Formation in the Gangdese magmatic belt, South Tibet

Author information +
History +
PDF

Abstract

Zircon U-Pb geochronology, Hf isotope and whole-rock geochemistry were performed on the tuffs of the Yeba Formation in the Gangdese magmatic belt, South Tibet. The results are used to detail the age, source nature and tectonic processes that led to the formation of the Gangdese belt. Dating results indicate that the rhyolitic-andesitic tuffs were formed at 174-170 Ma. Positive and variable zircon ε Hf(t) values of the rhyolitic tuffs reveal that the source was dominated by juvenile material, however, experienced crustal contamination. The basaltic tuffs have low HREEs, high contents of compatible elements (V and Cr) and no Eu anomaly. In contrast, the rhyolitic-andesitic tuffs show low compatible trace elements, depletion in Eu but enrichment in incompatible elements (Rb, Zr and Hf). According to the discrimination diagrams of P2O5-SiO2 and Th-Rb, the rhyolitic-andesitic tuffs show a close affinity to I-type granitoids. Moreover, these tuffs are marked by significant depletion in Nb, Ta and Ti, plotted in calc-alkaline field, and with the andesitic-rhyolitic tuffs falling into an active continental margin setting. We suggest that these tuffs of the Yeba Formation were probably generated in an active continental margin above the northward subduction of the Neo-Tethyan oceanic lithosphere.

Keywords

tuff / Yeba Formation / Geochemistry / U-Pb dating / Gangdese / Tibet

Cite this article

Download citation ▾
Xuxuan Ma, Zhiqin Xu, Xijie Chen, Joseph G. Meert, Zhenyu He, Fenghua Liang, Yuanku Meng, Shiwei Ma. The origin and tectonic significance of the volcanic rocks of the Yeba Formation in the Gangdese magmatic belt, South Tibet. Journal of Earth Science, 2017, 28(2): 265-282 DOI:10.1007/s12583-016-0925-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aitchison J. C., Badengzhu, Davis A. M., . Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 2000, 183(1–2): 231-244.

[2]

Allègre C. J., Minster J. F. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 1978, 38(1): 1-25.

[3]

Andersen T. Correction of Common Pb in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 2002, 192(1–2): 59-79.

[4]

Barbey P., Allé P., Brouand M., . Rare-Earth Patterns In Zircons from the Manaslu Granite and Tibetan Slab Migmatites (Himalaya): Insights In the Origin and Evolution of a Crustal Derived-Granite Magma. Chemical Geology, 1995, 125(1–2): 1-17.

[5]

Beaudoin G., Hebert R., Wang C. S., . Epithermal Au-Ag-Cu, Porphyry Cu-(Au-Mo) and Cu-Au-Ag-Zn-Pb Skarn Deposits of the Gangdese Arc, Tibet: Mineral Deposit Research: Meeting the Global Challenge, Biennial SGA Meeting, 8th, Beijing, China, 18–21 August 2005, Proceedings., 2005, 2: 1219-1222.

[6]

Belousova E. A., Griffin W. L., O’Reilly S. Y., . Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

[7]

Belousova E. A., Griffin W. L., O’Reilly S. Y. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modeling: Examples from Eastern Australian Granitoids. Journal of Petrology, 2006, 47(2): 329-353.

[8]

Boynton W. V. Henderson P. Geochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, 1984, Amsterdam: Elsevier, 63-114

[9]

Burchfiel B. C., Chen Z., Hodges K. V., . The South Tibetan Detachment System, Himalayan Orogeny: Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt. Geo. Soc. Am. Spec. Pap., 1992, 269: 1-41.

[10]

Burg J. P. The Asia-Kohistan-India Collision: Review and Discussion. Frontiers in Earth Science, 2011, 279-309.

[11]

Castiñeiras P., García F. D., Barreiro J. G. REE-Assisted^U-Pb Zircon Age (SHRIMP) of an Anatectic Granodiorite: Constraints on the Evolution of the a Silva Granodiorite, Iberian Allochthonous Complexes. Lithos, 2010, 116(1–2): 153-166.

[12]

Chappell B. W. Aluminium saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 1999, 46(3): 535-551.

[13]

Chen W., Ma C. Q., Bian Q. J., . Evidences from Geochemistry and Zircon U-Pb Geochronology of Volcanic Rocks of Yeba Formation In Demingding Area, the East of Middle Gangdise, Tibet. Geological Science and Technology Information, 2009, 28(3): 31-40.

[14]

Chen J. S., Huang B. C., Sun L. S. New Constraints to the Onset of the India-Asia Collision: Paleomagnetic Reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 2010, 489(1–4): 189-209.

[15]

Chu M. F., Chung S. L., Song B., . Zircon^U-Pb and Hf^Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 2006, 34(9): 745-748.

[16]

Chung S. L., Chu M. F., Zhang Y. Q., . Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations In Post-Collisional Magmatism. Earth-Science Reviews, 2005, 68(3–4): 173-196.

[17]

Chung S. L., Chu M. F., Ji J. Q., . The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 2009, 477(1–2): 36-48.

[18]

Claiborne L. L., Miller C. F., Wooden J. L. Trace Element Composition of Igneous Zircon: A Thermal and Compositional Record of the Accumulation and Evolution of a Large Silicic Batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 2010, 160(4): 511-531.

[19]

Condie K. C. Earth as an Evolving Planetary System, 2004, Amsterdam: Elsevier Press

[20]

Corfield R. I., Searle M. P., Pederson R. B. Tectonic Setting, Origin, and Obduction History of the Spontang Ophiolite, Ladakh Himalaya, NW India. The Journal of Geology, 2001, 109(6): 715-736.

[21]

Coulon C., Maluski H., Bollinger C., . Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, 1986, 79(3–4): 281-302.

[22]

Dai J. G., Wang C. S., Hébert R., . Petrology and Geochemistry of Peridotites In the Zhongba Ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys. Chemical Geology, 2012, 288(3–4): 133-148.

[23]

Debon F., Le Fort P., Sheppard S. M. F., Sonet J. The Four Plutonic Belts of the Transhimalaya-Himalaya: A Chemical, Mineralogical, Isotopic, and Chronological Synthesis along a Tibet-Nepal Section. Journal of Petrology, 1986, 27(1): 219-250.

[24]

Dewey J. F., Shackelton R. M., Chang C., . The Tectonic Evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond., 1988, A327: 379-413.

[25]

Ding L., Kapp P., Wan X. Q. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 2005, 24 3 2004

[26]

Dong G. C. Linzizong Volcanic Rocks in Linzhou Volcanic Basin, Tibet and Implication for India-Eurasia Collision Process:[Dissertation], 2002, Beijing: China University of Geoscience

[27]

Dong G. C., Mo X. X., Zhao Z. D., . A New Understanding of the Stratigraphic Successions of the Linzizong Volcanic Rocks In the Lhnzhub Basin, Northern Lhasa, Tibet, China. Geological Bulletin of China, 2005, 24(6): 549-557.

[28]

Dong G. C., Mo X. X., Zhao Z. D., . Magma Mixing in Middle Part of Gangdise Magma Belt: Evidences from Granitoid Complex. Acta Petrologica Sinica, 2006, 22(4): 835-844.

[29]

Dong Y. H., Xu J. F., Zeng Q. G., . Is there a Neo-Tethys’ Subduction Record Earlier than Arc Volcanic Rocks in the Sangri Group. Acta Petrologica Sinica, 2006, 22(3): 661-668.

[30]

Dupuis C., Hébert R., Dubois-Côté V., . Petrology and Geochemistry of Mafic Rocks from Mélange and Flysch Units Adjacent to the Yarlung Zangbo Suture Zone, Southern Tibet. Chemical Geology, 2005, 214(3–4): 287-308.

[31]

Geng Q. R., Pan G. T., Jin Z. M., . Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet. Earth Science—Journal of China University of Geosciences, 2005, 30(6): 747-760.

[32]

Geng Q. R., Pan G. T., Wang L. Q., . Isotopic Geochronology of the Volcanic Rocks from the Yeba Formation in the Gangdise Zone, Xizang. Sedimentary Geology and Tethyan Geology, 2005, 26(1): 1-7.

[33]

Girardeau J., Marcoux J., Allègre C. J., . Tectonic Environment and Geodynamic Significance of the Neo-Cimmerian Donqiao Ophiolite, Bangong-Nujiang Suture Zone, Tibet. Nature, 1984, 307(5496): 27-31.

[34]

Gorton M. P., Schandl E. S. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 2000, 38(5): 1065-1073.

[35]

Gou J. A New Knowledge on the Attributes of Yeba Formation in Lhasa Area. Tibetan Geology, 1994, 1: 1-6.

[36]

Griffin W. L., Pearson N. J., Belousova E., . The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica at Cosmochimica Acta, 2000, 64(1): 133-147.

[37]

Guo L. S., Liu Y. L., Liu S. W., . Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt, Southern Tibet: Implications for Early History of the Neo-Tethys. Lithos, 2013, 179(5): 320-333.

[38]

Gutscher M. A., Maury R., Eissen J. P. Can Slab Melting be Caused by Flat Subduction. Geology, 2000, 28(6): 535-538.

[39]

Guynn J. H., Kapp P., Pullen A., . Tibetan Basement Rocks Near Amdo Reveal “Missing” Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 2006, 34(6): 505-508.

[40]

Harrison T. M., Yin A., Grove M., . The Zedong Window: A Record of Superposed Tertiary Convergence in Southeastern Tibet. Journal of Geophysical Research, 2000, 105(B8): 19211-19230.

[41]

Hawkesworth C. J., Kemp A. I. S. Evolution of the Continental Crust. Nature, 2006, 443(7113): 811-817.

[42]

He S., Kapp P., DeCelles P. G., . Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 2007, 433(1-4): 15-37.

[43]

He Z. H., Yang D. M., Zheng C. Q., . Isotopic Dating of the Mamba Granitoid in the Gangdise Tectonic Belt and Its Constraints on the Subduction Time of the Neotethys. Geological Review, 2006, 52(1): 100-106.

[44]

Heaman L. M., Bowsin R., Crocket J. The Chemical Composition of Igneous Zircon Suites: Implications for Geochemical Tracer Studies. Geochimica et Cosmochimica Acta, 1990, 54(6): 1597-1607.

[45]

Hinton R. W., Upton B. G. J. The Chemistry of Zircon: Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths. Geochimica et Cosmochimica Acta, 1991, 55(1): 3287-3302.

[46]

Hoskin P. W. O., Ireland T. R. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 2000, 28(7): 627-630.

[47]

Hoskin P. W. O., Black L. P. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 2000, 18(4): 423-439.

[48]

Hoskin P. W. O., Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-55.

[49]

Hou Z. Q., Gao Y. F., Qu X. M., . Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 2004, 220(1-2): 139-155.

[50]

Hu Z. C., Liu Y. S., Chen L., . Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 425-430.

[51]

Ji W. Q., Wu F. Y., Chung S. L., . Zircon^U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 2009, 262(3–4): 229-245.

[52]

Jiang X., Zhao Z. D., Zhu D. C., . Zircon^U-Pb Geochronology and Hf Isotopic Geochemistry of Jiangba, Bangba, and Xiongba Granitoids in Western Gangdese, Tibet. Acta Petrologica Sinica, 2010, 26: 2155-2164.

[53]

Jiang Z. Q., Wang Q., Li Z. X., . Late Cretaceous (Ca. 90 Ma) Adaitic Intrusive Rocks in the Kelu Area, Gangdese Belt (Southern Tibet): Slab Melting and Implications for Cu-Au Mineralization. Journal of Asian Earth Sciences, 2012, 53(7): 67-81.

[54]

Kang Z. Q., Xu J. F., Chen J. L., . Geochemistry and Origin of Cretaceous Adakites in Mamuxia Formation, Sangri Group, South Tibet. Geochimica, 2009, 38(4): 334-344.

[55]

Kang Z. Q., Xu J. F., Chen J. L., . The Geochronology of Sangri Group Volcanic Rocks in Tibet: Constraints from Later Mamen Intrusions. Geochimica, 2010, 39(6): 520-530.

[56]

Kang Z. Q., Xu J. F., Wilde S. A., . Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 2014, 200–201(1): 157-168.

[57]

Kelemen P. B., Hanghoj K., Greene A. R. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treastise Geochem., 2003, 3: 593-660.

[58]

Konstantinovskaia E. A., Brunel M., Malavieille J. Discovery of the Paleo-Tethys Residual Peridotites along the Anyemaqen-Kunlun Suture Zone (North Tibet). C. R. Geoscience, 2003, 335(8): 709-719.

[59]

Lang X. H., Tang J. X., Li Z. J., . U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xietongmen District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 2014, 79(B): 608-622.

[60]

Lee H. Y., Chung S. L., Lo C. H., Ji J., . Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 2009, 477(1–2): 20-35.

[61]

Lee H. Y., Chung S. L., Ji J. Q., . Geochemical and Sr-Nd Isotopic Constraints on the Genesis of the Cenozoic Linzizong Volcanic Successions, Southern Tibet. Journal of Asian Earth Sciences, 2012, 53(2): 96-114.

[62]

Le Bas M. J., Le Maitre R. W., Streckeisen A. L., . A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 1986, 27(2): 745-750.

[63]

Leng Q. F., Tang J. X., Zheng W. B., . Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang-E Porphyry Cu-Mo Deposit, Tibet. Earth Science, 2016, 41(6): 999-1015.

[64]

Li X. H., Li Z. X., Zhou H. W., Liu Y., . U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia. Precambrian Research, 2002, 113(1–2): 135-154.

[65]

Li X. W., Mo X. X., Scheltens M., . Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau. Journal of Earth Science, 2016, 27(4): 545-570.

[66]

Li C., Wang T. W., Li H. M., . Discovery of Indosinian Megaporphyritic Granodiorite in the Gangdise Area: Evidence for the Existence of Paleo-Gangdise. Geological Bulletin of China, 2003, 22(5): 364-366.

[67]

Li H. Q., Xu Z. Q., Yang J. S., . Indosinian Orogenesis In the Lhasa Terrane, Tibet: New Muscovite 40Ar-39Ar Geochronology and Evolutionary Process. Acta Geologica Sinica, 2012, 86(5): 1116-1127.

[68]

Liu Y. S., Hu Z. C., Zong K. Q., . Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 2010, 55(15): 1535-1546.

[69]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1–2): 537-571.

[70]

Ludwig K. R. Users Manual for Isoplot/Ex (Rev. 2.49): A Geochronological Toolkit for Microsoft Excel, 2001, C. A: Berkeley Geochronology Center, 55.

[71]

Ma L. Y., Wang Y. J., Fan W. M., . Petrogenesis of the Early Eocene I-Type Granites in West Yingjiang (SW Yunnan) and Its Implications for the Eastern Extension of the Gangdese Batholiths. Gondwana Research, 2014, 25(1): 401-419.

[72]

Maas R., Kinny P. D., Williams I. S., . The Earth’s Oldest Known Crust: A Geochronological and Geochemical Study of 3900–4200 Ma Old Detrital Zircon from Mt. Narryer and Jack Hill, Western Australia. Geochimica et Cosmochimica Acta, 1992, 56(3): 1281-1300.

[73]

Mao G. Z., Hu J. R., Xie Y. W. Characteristics and Genetic Environment of the Yeba Formation in Lhasa Region. Tibetan Geology, 2002, 1: 12-18.

[74]

Matte P., Tapponnier P., Arnaud N., . Tectonics of Western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letters, 1996, 142(3–4): 311-330.

[75]

McDermid I. R. C., Aitchison J. C., Davis A. M., . The Zedong Terrane: A Late Jurassic Intra-Oceanic Magmatic Arc within the Yarlung-Tsangpo Suture Zone, Southeastern Tibet. Chemical Geology, 2002, 187(3–4): 267-277.

[76]

Mo X. X., Deng J., Zhao Z. Volcanic Records of India-Asia Collision and Post-Collision Processes, 2003, 263.

[77]

Mo X. X., Zhao Z. D., Deng J. F., . Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 2003, 10(3): 135-148.

[78]

Mo X. X., Dong G. C., Zhao Z. D., . Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 2005, 11(3): 281-290.

[79]

Mo X. X., Niu Y. L., Dong G. C., . Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: a Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 2008, 250(1–4): 49-67.

[80]

Mo X. X., Dong G. C., Zhao Z. D., . Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 2009, 20(2): 241-249.

[81]

Mo X. X. Magmatism and Evolution of the Tibetan Plateau. Geological Journal of China Universities, 2011, 17(3): 351-367.

[82]

Murali A. V., Parthasarathy R., Mahadevan T. M., . Trace Element Characteristics, REE Patterns and Partition Coefficients of Zircons from Different Geological Environments—A Case Study on Indian Zircon. Geochimica et Cosmochimica Acta, 1983, 47(11): 2047-2052.

[83]

Murphy M. A., Yin A., Harrison T. M., . Did the Indo-Asian Collision alone Create the Tibetan Plateau. Geology, 1997, 25(8): 719-722.

[84]

Nomade S., Renne P. R., Mo X. X., . Miocene Volcanism In the Lhasa Block, Tibet: Spatial Trends and Geodynamic Implications. Earth and Planetary Science Letters, 2004, 221(1–4): 227-243.

[85]

Pan G. T., Mo X. X., Hou Z. Q., . Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 2006, 22(3): 521-533.

[86]

Parrish R. R., Hodges K. V. Isotopic Constraints on the Age and Provenance of the Lesser and Greater Himalayan Sequences, Nepalese Himalaya. Bull. Geol. Soc. Am., 1996, 108(7): 904-911.

[87]

Paterson B. A., Stephens W. E., Rogers G., . The Nature of Zircon Inheritance in Two Granitic Plutons. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1–2): 459-471.

[88]

Pedersen R. B., Searle M. P., Corfield R. I. U-Pb Zircon Ages from the Spontang Ophiolite, Ladakh Himalaya. Journal of the Geological Society, 2001, 158(3): 513-520.

[89]

Plank T., Langmuir C. H. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 1998, 145(3–4): 325-394.

[90]

Qu X. M., Xin H. B., Xu W. Y. Collation of Age of Ore-Hosting Volcanics in Xiongcun Superlarge Cu-Au Deposit on Basis of Three Zircon U-Pb SHRIMP Ages. Mineral Deposits, 2007, 26(5): 512-518.

[91]

Rapp R. P., Watson E. B. Dehydration Melting of Metabasalt At 8–32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 1995, 36(4): 891-931.

[92]

RGRL. Regional Geological Report of the Linzhi 1:250000 Map (RGRL). The Geological Investigation Institute of the Yunnan Province, 2003.

[93]

RGRLZ. Regional Geological Report of the Lhasa and Zedang 1:250000 Maps (RGRLZ). The Geological Investigation Institute of the Tibet Autonomous Region, 2007.

[94]

Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 2002, 184(1–2): 123-138.

[95]

Rubatto D., Hermann J. Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks. Chemical Geology, 2007, 241(1–2): 38-61.

[96]

Rudnick R. L. Making Continental Crust. Nature, 1995, 378: 571-578.

[97]

Schaltegger U., Fanning M., Gunther D., . Growth, Annealing and Recrystallization of Zircon and Preservation of Monazite in High-Grade Metamorphism: Conventional andIn-Situ U-Pb Isotope, Cathodoluminescence and Microchemical Evidence. Contributions to Mineralogy and Petrology, 1999, 134(2–3): 186-201.

[98]

Schilling R. F., Zajac M., Evans R., . Petrologic and Geochemical Variations Along the Mid-Atlantic Ridge from 29 Degrees N to 73 Degrees N. American Journal of Science, 1983, 283(6): 510-586.

[99]

Searle M. P., Asif M., Khan M., . The Tectonic Evolution of the Kohistan-Karakoram Collision Belt along the Karakoram Highway Transect, North Pakistan. Tectonics, 1999, 18(6): 929-949.

[100]

Soderlund U., Patchett P. J., Vervoort J. D., . The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Basic Intrusions. Earth and Planetary Science Letters, 2004, 219(3–4): 311-324.

[101]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London, 1989, 42(1): 313-345.

[102]

Tafti R., Mortensen J. K., Lang J. R., . Jurassic^U-Pb and Re-Os^Ages for the Newly Discovered Xietongmen Cu-Au Porphyry District, Tibet, PRC: Implications for Metallogenic Epochs in the Southern Gangdese Belt. Economic Geology, 2009, 104(1): 127-136.

[103]

Tafti R. Metallogeny, Geochronology and Tectonic Setting of the Gangdese Belt, Southern Tibet, China:[Dissertation], 1961, Vancouver: The University of British Columbia

[104]

Tafti R., Lang J. R., Mortensen J. K., . Geology and Geochronology of the Xietongmen (Xiongcun) Cu-Au Porphyry District, Southern Tibet, China. Economic Geology, 2014, 109(7): 1967-2001.

[105]

Tang J. X., Li F. J., Li Z. J., . Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet: Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 2010, 29(3): 461-475.

[106]

Tapponnier P., Xu Z. Q., Roger F., . Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294(5549): 1671-1677.

[107]

Taylor S. R., McLennan S. M. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 1995, 33(2): 241-265.

[108]

TBGMR Tibet Bureau of GeologyMineral Resources 1:250000 Geological Map of the Linzhi Region, 2003.

[109]

TBGMR Tibet Bureau of GeologyMineral Resources 1:250000 Geological Maps of the Lhasa and Zedang Region, 2007.

[110]

Turner S., Arnaud N., Liu J., . Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Imlications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 1996, 37(1): 45-71.

[111]

Wang N. W., Wang S. E., Liu G. F., . The Juro-Cretaceous Marine-Terrestrial Alternating Formations in Lhasa Area, Xizang (Tibet). Acta Geologica Sinica, 1983, 57(1): 83-95.

[112]

Wang Q., Wyman D. A., Li Z. X., . Eocene North-South Trending Dikes in Central Tibet: New Constraints on the Timing of East-West Extension with Implications for Early Plateau Uplift. Earth and Planetary Science Letters, 2010, 298(1–2): 205-216.

[113]

Wang Q. H., Wang B. S., Li J. G., . Basic Features and Ore Prospect Evaluation of the Gangdise Island Arc, Tibet, and Its Copper Polymetallic Oore Belt. Geological Bulletin of China, 2002, 21(1): 35-40.

[114]

Weaver B. L. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 1991, 104(2–4): 381-397.

[115]

Wen D. R., Liu D. Y., Chung S. L., . Zircon^SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 2008, 252(3–4): 191-201.

[116]

Winchester J. A., Floyd P. A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 1977, 20: 325-342.

[117]

Wood D. A. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 1980, 50(1): 11-30.

[118]

Wu F. Y., Ji W. Q., Liu C. Z., . Detrital Zircon U-Pb and Hf Isotopic Data from the Xigaze Fore-Arc Basin: Constraints on Transhimalayan Magmatic Evolution in Southern Tibet. Chemical Geology, 2010, 271(1–2): 13-25.

[119]

XBGMR Xizang Bureau of GeologyMineral Resources The Regional Geology of Xikazi, Yadong and Jiaca (Geology Part). Scale 1:200000: Beijing, 1991.

[120]

Xia B., Xu L. F., Zhang Y. Q., . SHRIMP Zircon U-Pb Dating of Granodiorites from Xietongmen Pluton, Tibet and Its Geological Implication. Geotectonica et Metallogenia, 2008, 32(2): 238-242.

[121]

Xu Z. Q., Yang J. S., Li H. B., . The Tibetan Plateau: Formed by Orogeny, 2007, Beijing: Geological Publishing House

[122]

Xu Z. Q., Yang J. S., Li H. B., . On the Tectonics of the India-Asia Collision. Acta Geologica Sinica, 2011, 85(1): 1-33.

[123]

Xu Z. Q., Yang J. S., Li H. Q., . Indosinian Collision-Orogenic System of Chinese Continent and Its Orogenic Mechanism. Acta Petrologica Sinica, 2012, 28(6): 1697-1709.

[124]

Xu Z. Q., Yang J. S., Li W. C., . Tectonic Background of Important Metallogenic Belts in the Southern and Southeastern Tibetan Plateau and Ore Prospecting. Acta Geologica Sinica, 2012, 86(12): 1857-1868.

[125]

Xu Z. Q., Yang J. S., Li W. C., . Paleo-Tethys System and Accretionary Orogeny in the Tibet Plateau. Acta Petrologica Sinica, 2013, 29(6): 1847-1860.

[126]

Xu Z. Q., Dilek Y., Cao H., . Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 2015, 105: 320-337.

[127]

Xu R. H., Jin C. W. A Geochronological Study of the Quxu Batholith, Xizang. Scentia Geologica Sinica, 1984, 4: 414-422.

[128]

Yang J. S., Xu Z. Q., Geng Q. R., . A Possible New HP/UHP Metamorphic Belt in China: Discovery of Eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 2006, 80: 1787-1792.

[129]

Yang J. S., Bai W. J., Fang Q. S., . Discovery of Diamond and anUnusual Mineral Group from the Podiform Chromite, Polar Ural. Geology in China, 2007, 34(1): 951-952.

[130]

Yang J. S., Xu Z. Q., Li Z. L., . Discovery of anEclogite Belt in the Lhasa Block, Tibet: ANew Border for Paleo-Tethys. Journal of Asian Earth Sciences, 2009, 34(1): 76-89.

[131]

Yang Z. M., Hou Z. Q., Xia D. X., . Relationship between Western Porphyry and Mineralization in Qulong Copper Deposit of Tibet and Its Enlightenment to Further Exploration. Mineral Deposits, 2008, 27(1): 28-36.

[132]

Yin A., Harrison T. M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci., 2000, 28(1): 211-280.

[133]

Yin J. R., Pei S. W., Gou J., . The Middle Jurassic Bivalve Fauna in the Volcanic Rock Series (Yaiba Formation) of the Lhasa Massif and Its Paleogeographic Significance. Regional Geology of China, 1998, 17(2): 132-136.

[134]

Yin J. R., Grant-Mackie J. A. Late Triassic-Jurassic Bivalves from Volcanic Sediments of the Lhasa Block, Tibet. New Zealand Journal of Geology and Geophysics, 2005, 48(3): 555-576.

[135]

Yin J. R., Cai H. W., Zhou Z. G. Study of Marine Triassic/Jurassic Boundary Stratigraphy and the Latest Triassic Mass Extinction in Tibet. Earth Science Frontiers, 2006, 13(4): 244-254.

[136]

Zeng Z. C., Liu D. M., ZeRen Z. X., . Geochemistry and Tectonic Setting of Lavas in the Yeba Formation in the Eastern Part of the Gangdise Belt. Journal of Jilin University (Earth Science Edition), 2009, 39(3): 435-445.

[137]

Zhang H. F., Xu W. C., Guo J. Q., . Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdese Belt, Tibet: Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab. Acta Petrologica Sinica, 2007, 23(6): 1347-1353.

[138]

Zhang H. F., Xu W. C., Guo J. Q., . Indosinian Orogenesis of the Gangdise Terrane: Evidences from Zircon U-Pb Dating and Petrogenesis of Granitoids. Earth Science—Journal of China Universiy of Geosciences, 2007, 32(2): 155-166.

[139]

Zhang K. J., Zhang Y. X., Tang X. C., . Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 2012, 114(3–4): 236-249.

[140]

Zhang S. B., Zheng Y. F., Zhao Z. F., . Neoproterozoic Anatexis of Archean Lithosphere: Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 2008, 163(3–4): 210-238.

[141]

Zhao C. H. The ATK Diagram of Basic-Intermediate Volcanic Rocks and Tectonic Environment. Geological Science and Technology Information, 1989, 8(4): 1-5.

[142]

Zhao Z., Mo X. X., Dilek Y., . Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 2009, 113(1–2): 190-212.

[143]

Zhong K. H., Yao D., Dorji, Zheng F. S., . Structural Features of Yeba Tectonite Group in Jiama (Gyama)-Qulong Area of Tibet. Acta Geoscientica Sinica, 2013, 34(1): 75-86.

[144]

Zhu D. C., Pan G. T., Chung S. L., . SHRIMP Zircon Age and Geochemical Constraint on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 2008, 50(5): 442-471.

[145]

Zhu D. C., Zhao Z. D., Pang G. T., . Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction. Journal of Asian Earth Sciences, 2009, 34(3): 298-309.

[146]

Zhu D. C., Zhao Z. D., Niu Y. L., . The Lhasa Terrane: Record of aMicro Continent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 2011, 301(1–2): 241-255.

[147]

Zhu D. C., Zhao Z. D., Niu Y. L., . The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 2013, 23(4): 1429-1454.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/