Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet

Xiuhua Zheng, Chenyang Duan, Bairu Xia, Yong Jiang, Jian Wen

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (4) : 870-878.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (4) : 870-878. DOI: 10.1007/s12583-016-0918-7
Article

Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet

Author information +
History +

Abstract

The exploitation of thermal water and the mix of cold water changed the properties of geofluid in shallow reservoir, which altered the concentration of the chemical constitutes and continuously built new water-rock reaction. This paper deduced reservoir pressure and temperature variation tendency from 2004 to 2013, analyzed the change of some components in the shallow reservoir water, and finally obtained the evolution of the shallow geothermal water with hydrogeochemical model. The results show the reservoir pressure decreased significantly compared with the slight decline of reservoir temperature, and much cold groundwater infiltrated into the shallow reservoir, which affected the solubility of SiO2 and led to precipitation, the increased CO2 in shallow reservoir promoted the dissolution of aluminosilicate. Calcite and kaolinite precipitation zone has extended to the north in the field, which influenced the porosity of the reservoir rock.

Keywords

reservoir pressure and temperature / component analysis / hydrochemical modeling / dissolution/precipitation

Cite this article

Download citation ▾
Xiuhua Zheng, Chenyang Duan, Bairu Xia, Yong Jiang, Jian Wen. Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet. Journal of Earth Science, 2019, 30(4): 870‒878 https://doi.org/10.1007/s12583-016-0918-7

References

Abu-Jaber N., Ismail M. Hydrogeochemical Modeling of the Shallow Groundwater in the Northern Jordan Valley. Environmental Geology, 2014, 44(4): 391-399.
CrossRef Google scholar
Appelo C. A. J., Parkhurst D. L., Post V. E. A. Equations for Calculating Hydrogeochemical Reactions of Minerals and Gases such as CO2 at High Pressures and Temperatures. Geochimica et Cosmochimica Acta, 2014, 125: 49-67.
CrossRef Google scholar
Árnason B. Hot Groundwater Systems in Iceland Traced by Deuterium. Hydrology Research, 1977, 8(2): 93-102.
CrossRef Google scholar
Arnórsson S., Sigurdsson S., Svavarsson H. The Chemistry of Geothermal Waters in Iceland. I. Calculation of Aqueous Speciation from 0º to 370 ºC. Geochimica et Cosmochimica Acta, 1982, 46(9): 1513-1532.
Ben Brahim F., Makni J., Bouri S., . Evaluation of Temperature and Mixing Process of Water in Deep and Shallow Aquifers in the Southwestern Tunisia: Case of Djerid Region. Arabian Journal for Science and Engineering, 2014, 39(7): 5677-5689.
CrossRef Google scholar
Bi E. P. Geochemical Modeling of the Mixing of Geothermal Water and Reinjection Water: A Case Study of Laugalnd Low-Temperature Geothermal Field in Iceland. Earth Science—Journal of China University of Geosciences, 1998, 23(6): 631-634.
Bozau E., van Berk W. Hydrogeochemical Modeling of Deep Formation Water Applied to Geothermal Energy Production. Procedia Earth and Planetary Science, 2013, 7: 97-100.
CrossRef Google scholar
Chen Z. Y. Advancements of Hydrogeochemical Modeling. Advance in Earth Sciences, 1995, 10(3): 278-282.
Cidu R., Bahaj S. Geochemistry of Thermal Waters from Morocco. Geothermics, 2000, 29(3): 407-430.
CrossRef Google scholar
Criss R. E. Use of Geochemical and Geophysical Techniques to Characterize and Prospect for Geothermal Resources and Hydrothermal Ore Deposits. Journal of Earth Science, 2015, 26(1): 73-77.
CrossRef Google scholar
Cruz J. V., França Z. Hydrogeochemistry of Thermal and Mineral Water Springs of the Azores Archipelago (Portugal). Journal of Volcanology and Geothermal Research, 2006, 151(4): 382-398.
CrossRef Google scholar
Dor J. The Basic Characteristics of the Yangbajing Geothermal Field—A Typical High Temperature Geothermal System. Engineering Science, 2003, 5(1): 42-47.
Edmunds W. M., Carrillo-Rivera J. J., Cardona A. Geochemical Evolution of Groundwater beneath Mexico City. Journal of Hydrology, 2002, 258(1–4): 1-24.
CrossRef Google scholar
El Mandour A., El Yaouti F., Fakir Y., . Evolution of Groundwater Salinity in the Unconfined Aquifer of Bou-Areg, Northeastern Mediterranean Coast, Morocco. Environmental Geology, 2008, 54(3): 491-503.
CrossRef Google scholar
Feng Z. J., Zhao Y. S., Zhou A. C., . Development Program of Hot Dry Rock Geothermal Resource in the Yangbajing Basin of China. Renewable Energy, 2012, 39(1): 490-495.
CrossRef Google scholar
Fisher R. S., Mullican I. F. Hydrochemical Evolution of Sodium- Sulfate and Sodium-Chloride Groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 1997, 5(2): 4-16.
CrossRef Google scholar
Fournier R. O. Geochemical and Hydrologic Considerations and the Use of Enthalpy-Chloride Diagrams in the Prediction of Underground Conditions in Hot-Spring Systems. Journal of Volcanology & Geothermal Research, 1979, 5(1): 1-16.
CrossRef Google scholar
Fournier R. O., Potter R. W. I. A Revised and Expanded Silica (Quartz) Geothermometer. Geothermal Resources Council Bulletin, 1982, 11: 3-12.
Fournier R. O., Truesdell A. H. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275.
CrossRef Google scholar
Fryar A., Mullican W., Macko S. Groundwater Recharge and Chemical Evolution in the Southern High Plains of Texas, USA. Hydrogeology Journal, 2001, 9(6): 522-542.
CrossRef Google scholar
Giggenbach W. F. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765.
CrossRef Google scholar
Giggenbach W. F. Chemical Techniques in Geothermal Exploration. Applications of Geochemistry in Geothermal Reservoir Development, 1991, 11: 9-114.
Kaya E., Zarrouk S. J., OʼSullivan M. J. Reinjection in Geothermal Fields: A Review of Worldwide Experience. Renewable and Sustainable Energy Reviews, 2011, 15(1): 47-68.
CrossRef Google scholar
Li X. L., Sun Z. X., Liu J. H. Hydrogeochemistry. Third Edition, 2010, 37: 153-156.
Liang, T. L., Zhang, D. Q., Tan, Q. Y., et al., 1990. Geothermal Exploration Report of Yangyi Geothermal Field. Geothermal Geological Team of Tibet, Lhasa. 208 (in Chinese)
Liu M. L., Guo Q. H., Zhang X. B., . Characteristic Solutes in Geothermal Water from the Rehai Hydrothermal System, Southwestern China. Journal of Earth Science, 2015, 26(1): 140-148.
CrossRef Google scholar
Lord D. L., Shah S. N., Rein R. G., . Study of Perforation Friction Pressure Employing a Large-Scale Fracturing Flow Simulator. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1994, 449-458.
Lu G. P., Liu R. F. Aqueous Chemistry of Typical Geothermal Springs with Deep Faults in Xinyi and Fengshun in Guangdong Province, China. Journal of Earth Science, 2015, 26(1): 60-72.
CrossRef Google scholar
Opondo K. M. The Fluid Characteristics of Three Exploration Wells Drilled at Olkaria-Domes Field, Kenya, 2008, 368-372.
Parkhurst D. L., Appelo C. A. J. Userʼs Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One- Dimensional Transport, and Inverse Geochemical Calculations, 1999.
Shen J. N. Calculation of Well Head Temperature of Geothermal Water Well. Journal of Daqing Petroleum Institute, 1998, 22(4): 83-86.
Sun H. L., Ma F., Lin W. J., . Geochemical Characteristics of High Temperature Geothermal Field and Geothermometer Application in Tibet. Geological Science and Technology Information, 2015, 34(3): 171-177.
Tempel R. N., Sturmer D. M., Schilling J. Geochemical Modeling of the Near-Surface Hydrothermal System beneath the Southern Moat of Long Valley Caldera, California. Geothermics, 2011, 40(2): 91-101.
CrossRef Google scholar
Thomas J. M., Welch A. H., Preissler A. M. Geochemical Evolution of Ground Water in Smith Creek Valley—A Hydrologically Closed Basin in Central Nevada, U.S.A. Applied Geochemistry, 1989, 4(5): 493-510.
CrossRef Google scholar
Wei M. H., Tian T. S., Sun Y. D., . A Study of the Scaling Trend of Thermal Groundwater in Kangding Kangaing County of Sichuan. Hydrogeology & Engineering Geology, 2012, 39(5): 132-138.
White R. W., Powell R., Phillips G. N. A Mineral Equilibria Study of the Hydrothermal Alteration in Mafic Greenschist Facies Rocks at Kalgoorlie, Western Australia. Journal of Metamorphic Geology, 2003, 21(5): 455-468.
CrossRef Google scholar
Yao J. M., Zhou X., Zhou H. Y. Hydrogeochemical Simulation for Ninghebei Ordovician Limestone Wellfield in Tianjin. Geoscience, 2006, 20(3): 494-499.
Zhang X. B., Hu Q. H. Development of Geothermal Resources in China: A Review. Journal of Earth Science, 2018, 29(2): 452-467.
CrossRef Google scholar
Zhang X. G. Sulfur Mineralization of Modern Geothermal System in Yangbajing Basin of Tibet. Geology of Chemical Minerals, 1998, 20(1): 1-10.
Zhao P., Jin J., Zhang H. Z., . Chemical Composition of Thermal Water in the Yangbajing Geothermal Field, Tibet. Scientia Geologica Sinca, 1998, 33(1): 61-67.
Zhao P., Kennedy M., Dor J., . Noble Gases Constraints on the Origin and Evolution of Geothermal Fluids from the Yangbajing Geothermal Field, Tibet. Acta Petrologica Sinica, 2001, 17(3): 497-503.
Zhou H. Y., Zhou X., Yao J. H. Hydrogeochemical Modeling of the Conghua Hot Spring in Guangdong. Geoscience, 2007, 21(4): 619-624.

Accesses

Citations

Detail

Sections
Recommended

/