Geochronology, geochemistry and tectonic significance of the early Carboniferous gabbro and diorite plutons in West Ujimqin, Inner Mongolia

Shiwei Ma , Changfeng Liu , Zhiqin Xu , Zhiguang Zhou , Jinyuan Dong , Hongying Li

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (2) : 249 -264.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (2) : 249 -264. DOI: 10.1007/s12583-016-0912-2
Petrology and Petrogeochemistry

Geochronology, geochemistry and tectonic significance of the early Carboniferous gabbro and diorite plutons in West Ujimqin, Inner Mongolia

Author information +
History +
PDF

Abstract

Early Carboniferous gabbros and diorites are distributed in West Ujimqin, Inner Mongolia. The LA-ICP-MS zircon U-Pb ages of the gabbro and diorite samples are 321±2 Ma (MSWD=0.65) and 319.4±1.5 Ma (MSWD=0.42), respectively. In addition, new geochemistry data from three gabbro and three diorite samples are presented. All six samples show high Al2O3 contents but low-TiO2 contents, belonging to tholeiitic and calc-alkali basalt series. All of the samples have similar chondrite normalized REE patterns characterized by moderate depletion in LREE similar to normal middle oceanic ridge basalt (MORB). The MORB and PM-normalized trace element patterns show the enrichment in large ion lithophile elements (LILE, e.g., Rb, Ba and Sr), depletion in high field strength elements (HFSE) and distinctly negative Nb and Ta anomalies similar to volcanic arc basalt. Furthermore, as shown in the correlation plots of La/Ba vs. La/Nb, Ba/La vs. Ce/Pb, Th/La vs. Ce/Pb, Nb/La vs. Ba/Rb, and Nb/Y vs. La/Yb, the magma source has undergone contamination and metasomatism from the subduction fluid. According to the Zr/Nb, La/Nb, and La/Ta ratios and the Nb/Y vs. Zr/Y and Sm/Yb vs. La/Sm diagrams, the magma was derived from shallow depleted lithospheric mantle and formed by moderate (5%–20%) partial melting of spinel lherzolites. Tectonic setting discrimination diagrams reveal that the gabbros and diorites display both characteristics of MORB and volcanic arc basalt, which is consistent with their geochemical characteristics. On the basis of the geo-chemical features of these samples, combined with regional geological data and many previous researches in the study area, the Early Carboniferous gabbros and diorites of West Ujimqin are suggested to be formed in an intensely extensional rift setting, and a limited immature ocean basin probably formed after subsequent development.

Keywords

zircon U-Pb age / geochemistry / extensional setting / Early Carboniferous / West Ujimqin

Cite this article

Download citation ▾
Shiwei Ma, Changfeng Liu, Zhiqin Xu, Zhiguang Zhou, Jinyuan Dong, Hongying Li. Geochronology, geochemistry and tectonic significance of the early Carboniferous gabbro and diorite plutons in West Ujimqin, Inner Mongolia. Journal of Earth Science, 2017, 28(2): 249-264 DOI:10.1007/s12583-016-0912-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aldanmaz E., Pearce J. A., Thirlwall M. F., . Petrogenetic Evolution of Late Cenozonic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 2000, 102(1–2): 67-95.

[2]

Badarch G., Dickson C. W., Windley B. F. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 2002, 21(1): 87-110.

[3]

Bai H. The Petrological and Geochemical Characteristics of Ophiolite on the Area of Diyanmiao in the Inner Mongolia: [Dissertation], 2013, Shijiazhuang: Shijiazhuang University of Economics, 1-59.

[4]

Baksi A. K. Searth for a Deep-mantle Component in Mafic Lavas Using an Nb-Y-Zr Plot. Canadian Journal of Earth Sciences, 2001, 38(5): 813-824.

[5]

Bao Q. Z., Zhang C. J., Wu Z. L., . Carboniferous-Permian Marine Lithostratigraphy and Sequence Stratigraphy in Xi Ujimqin Qi, Southeastern Inner Mongolia, China. Geological Bulletin of China, 2006, 25(5): 572-579.

[6]

Bao Q. Z., Zhang C. J., WU Z. L., . SHRIMP^U-Pb Zircon Geochronology of a Carboniferous Quartz-Diorite in Baiyingaole Area,Inner Mongolia and Its Implications. Journal of Jilin University (Earth Science Edition), 2007, 37(1): 15-23.

[7]

Bienvenu P., Bougault H., Joron J., . MORB Alteration: Rare-Earth Element/Non-Rare-Earth Hygromagmaphile Element fractionation. Chemical Geology, 1990, 82(1-2): 1-14.

[8]

Cabanis B., Lecolle M. Le Diagramme La/10-Y/15-Nb/8:Unoutil pour la Discrimination de Series Volcaniqueset la Miseenmiseen Evidence Desprocessus de Mélange et/ou de Contamination Crustale. The La/10–Y/15–Nb/8 Diagram: A Tool for Distinguishing Volcanic Series and Discovering Crustal Mixing and/or Contamination. Comptes Rendus de I’Academie des Sciences, Series 2, Mecanique, Physique, Chimie, Sciences de I’Univers. Sciences de la Terre, 1989, 309(20): 2023-2029.

[9]

Cai K. D., Yuan C., Sun M., . Geochemical Characteristics and 40Ar-39Ar Ages of the Amphibolites and Gabbros in Tarlang Area: Implications for Tectonic Evolution of the Chinese Altai. Acta Petrological Sinica, 2007, 23(5): 877-888.

[10]

Cao C. Z. Cao C. Z., Yang F. L., Tian C. L. The Ophiolite in Hegenshan district, Nei Mongol and the Position of Suture Line between Sino-Korean and Siberian Plates. Proceedings of North China Plate Tectonics, 1986, Beijing: Geological Publishing House, 64-86.

[11]

Chen B., Jahn B. M., Wilde S. A., . Two Contrasting Paleozonic Magmatic Belts in Northern Inner Mongolia, China: Petrogenesis and Tectonic Implications. Tectonophysics, 2000, 328(1–2): 157-182.

[12]

Chen B., Zhao G. C., Simon W.I.L.D.E. Subduction-and Collision-Related Granitoids from Southern Sonidzuoqi, Inner Mongolia: Isotopic Ages and Tectonic Implications. Geological Review, 2001, 47(4): 361-367.

[13]

Chen C., Zhang Z. C., Guo Z. J., . Geochronology, Geochemistry, and Its Geological Significance of the Permian Mandula Mafic Rocks in Damaoqi, Inner Mongolia. Sci China Earth Sci, 2012, 55(1): 39-52.

[14]

Cheng Y. H., Teng X. J., Li Y. F., . Early Permian East-Ujimqin Mafic-Ultrafic and Granitic Rocks from the Xing’an-Mongolian Orogenic Belt, North China: Origin, Chronology, and Tectonic Implications. Journal of Asian Earth Sciences, 2014, 96: 361-373.

[15]

Condie K. C. Geochemical Changes in Basalts and Andessites across the Archaean-Proterozoic Boundary: Identification and Significance. Lithos, 1989, 23(1): 1-18.

[16]

Dai J. G., Wang C. S., Hebert R., . Late Devonian OIB Alkaline Gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo-Tethys. Gondwana Research, 2011, 19(S1): 232-243.

[17]

Dong J. Y. Characteristics and Geological Significance of Ophiolite on the Area Daqingmuchang in Xiwuqi, Inner Mongolia: [Dissertation], 2014, Beijing: China University of Geosciences, 1-56.

[18]

Feng Z. Q., Liu Y. J., Han G. Q., . The Petrogenesis of ~330 Ma Meta-Gabbro-Granite from the Tayuan Area in the Northern Segment of the Da Xing’ an Mts and Its Tectonic Implication. Acta Petrologica Sinica, 2014, 30(7): 1982-1994.

[19]

Fitton J. G., Saunders A. D., Norry M. J., . Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 1997, 153(3-4): 197-208.

[20]

Frey F. A., Weis D., Borisova A. Y. U., . Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau: New Perspectives from ODP Leg120 sites. Journal of Petrology, 2002, 43(7): 1207-1239.

[21]

Hancher J. M., Miller C. F. Zircon Zonation Patterns as Revealed by Cathodoluminescence and Back Scattered Electron Images: Implications for Interpretation of Complex Crustal Histories. Chemical Geology, 1993, 110(1): 1-13.

[22]

Hoffer G., Eissen J. P., Beate B., . Geochemical and Petrological Constrains on Rear-Arc Magma Genesis Processes in Ecuatdor: The Puyo Cones and Mera Lavas Volcanic Formation. Journal of Volcanology and Geothermal Research, 2008, 176(1): 107-118.

[23]

Hofmann A. W. Mantle Geochemistry: The Massage from Oceanic Volcanism. Nature, 1997, 385(6613): 219-229.

[24]

Hong D. W., Wang S. G., Xie X. L., . Correlation between Continental Growth and the Supercontinental Cycle: Evidence from the Grains with Positive εNd in the Central Asian Orogenic Belt. Acta Geologica Sinica, 2003, 77(2): 203-209.

[25]

Huang Y. M., Hawkesworth C., Smith I., . Geochemistry of Late Cenozoic Basaltic Volcanism in North land and Coromandel New Zealand Implications Formantle Enrichment Processes. Chemioal Geology, 2000, 164(3/4): 219-238.

[26]

Jahn B. M., Griffin W. L., Windley B. F. Continental Growth in the Phanerozoic: Evidence from Central Asia. Tectonophysics, 2000, 328 328 227.

[27]

Jahn B. M., Wu F.Y., Chen B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Trans. Roy. Soc. Edinburgh. Earth Sci, 2000, 91: 181-193.

[28]

Jahn B.M., Wu F.Y., Chen B. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 2000, 23(2): 82-92.

[29]

Jahn B.M., Wu F.Y., Chen B. Growth of Asia in the Phanerozoic Nd isotopic evidence. Gondwana Res, 2001, 4(4): 640-642.

[30]

Jahn B. M., Windley B., Natal’in B., . Phanerozoic Continental Growth in Central Asia. J. Asian Earth Sci, 2004, 23(5): 599-603.

[31]

Jahn B. M., Litvinovsky B. A., Reichow M., . Peralkaline Granitoid Magmatism in the Mongolian-Transbaikanlian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 2009, 113(3–4): 521-539.

[32]

Jakes P., White A. J. R. Major and Trace Element Abundance in Volcanic Rocks of Orogenic Areas. Bull.Geol. Soc. Am, 1972, 83(1972): 29-40.

[33]

Jian P., Kröner A., Windley B. F., . Zircon Ages of the Bayankhongor Ophiolite Mélangeand Associated Rocks: Time Constraints on Neoproterozoic to Cambrian Accretionary and Collisional Orogenesis in Central Mongolia. Precambr. Res., 2010, 177(1): 162-180.

[34]

Jian P., Kröner A., Windley B. F., . Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral “Hegenshan Ophiolite”. Lithos, 2012, 142–143: 48-66.

[35]

Jian P., Liu D. Y., Kröner A., . Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 2008, 101(3): 233-259.

[36]

Karsten J. K., Klein E. M., Sherman S. B. Subdution Zone Geochemical Characteristics in Ridge Basalts from the Southern Chile Ridge: Implication of Modern Ridge Subduction System for Archean. Lithos, 1996, 37(2): 143-161.

[37]

Koschek G. Origin and Significance of the SEM Cathodoluminescence from Zircon. Journal of Microscopy, 1993, 171(3): 223-232.

[38]

Li H. K., Zhu S. X., Xiang Z. Q. Zircon^U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yangqing, Beijing: Further constrains on the New Subdivion of the Mesoproterozoic Stratigraphy in the Northern North Chian Craton. Acta Petrologica Sinica, 2010, 26(7): 2131-2140.

[39]

Li H. Y., Zhou Z. G., Li P. J., . A Late Carboniferous-Early Permian Extensional Event in Xi Ujimqin Qi, Inner Mongolia-Evidence from Volcanic Rocks of Dashizhai Formation. Geotectonica Et Metallogenia, 2015, 40(5): 996-1013.

[40]

Li P. C., Liu Z. H., Li S. C., . Geochronology, Geochemistry, Zircon Hf Isotopic Characteristics and Tectonic Setting of Hudugeshaorong Pluton in Balinyouqi, Inner Mongolia. Earth Science, 2016, 41(12): 1995-2007.

[41]

Li J. Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 2006, 26(3–4): 207-224.

[42]

Li Y. J., Wang J. F., Li H. Y., . Recognition of Diyanmiao Ophiolite in Xi Ujimqin Banner, Inner Mongolia. Acta Petrologica Sinica, 2012, 28(4): 1281-1290.

[43]

Li Y. J., Wang J. F., Li H. Y., . Geochemical Characteristics of Baiyinbulage Ophiolite in Xi Ujimqin Banner, Inner Mongolia. Acta Petrologica Sinica, 2013, 29(8): 2719-2730.

[44]

Li S. Z., Santosh M., Jahn B. M. Evolution of the Asian Continent and Its Continental Margins. J. Asian Earth Sci, 2012, 47(1): 1-4.

[45]

Liegeois L. P. Preface-Some Words on the Post-collisional Magmatism. Lithos, 1998, 45: 1500-1511.

[46]

Liu C. F., Wu C., Zhu Y., . Late Paleozoic–Early Mesozoic Magmatichistory of Central Inner Mongolia, China: Implications for the Tectonic Evolution of the Xingmeng Orogenic Belt, the Southeastern Segment of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2015.

[47]

Liu C. F., Liu W. C., Zhou Z. G., . Geochronology, Geochemistry and Tectonicsetting of the Paleozoic–Early Mesozoic Intrusive in Siziwangqi, Inner Mongolia. Acta Geologica Sinica, 2014, 88(6): 992-1002.

[48]

Liu J. F., Chi X. G., Zhang X. Z., . Geochemical Characteristics of Carboniferous Quartz-Diorite in the Southern Xiwuqi Area, Inner Mongolia and Its Tectonic Significance. Acta Geologica Sinica, 2009, 83(3): 365-376.

[49]

Liu J. L., Sun F. Y., Wang Y. D., . Tectonic Setting of Hadahushu Mafic Intrusion in Urad Zhongqi Area, Inner Mongolia: Implications for Early Subduction History of Paleo-Asian Ocean Plate. Earth Science, 2016, 41(12): 2019-2030.

[50]

Liu Y. S., Wang X. H., Wang D. B., . Triassic High-Mg Adakitic Andesites from Linxi, Inner Mongolia: Insights into the Fate of the Paleo-Asian Ocean Crust and Fossil Slab-Derived Melt-peridotite Interaction. Chem. Geol., 2012, 328(11): 89-108.

[51]

Ma L., Wang Q., Wyman D. A., . Late Cretaceous Back-Arc Extension and Arc Systeme Volution in the Gangdese Area, Southern Tibet: Geochronological, Petrological, and Sr-Nd-Hf-O Isotopic Evidence from Dagzedia Bases. J. Geophys. Res. Solid Earth, 2015.

[52]

Melson W. G., Vallier T. L., Wright T. L. Chemical Diversity of Abyssal Volcanic Glass Erupted along Pacific, Atlantic and Indian Ocean Sea-Floor Spreading Centers. Am. Geophys. Union, Washington DC, 1976, 351-367.

[53]

Meschede M. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 1986, 56(3–4): 207-218.

[54]

Miao L. C., Fan W. M., Liu D. Y., . Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 2008, 32(5–6): 348-370.

[55]

Oyhantcabal P., Siegesmund S., Wemmer K., . Post-Collisional Transition from Cale-Alkaline to Alkaline Magmatism during Transcurrent Deformation in the Southernmost Dom Feliciano Belt (Braziliano-Pan-Afican, Uruguay). Lithos, 2007, 98(1–4): 141-159.

[56]

Parlak O. The Tauride Ophiolites of Anatolia (Turkey): A Review. Journal of Earth Science, 2016, 27(6): 901-934.

[57]

Pearce J. A. Thorpe R. S. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Andesites: Orogenic Andesites and Related rocks, 1982, Chichester: Wiley, 525-548.

[58]

Pearce J. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 2008, 100(1–4): 14-48.

[59]

Pearce J. A., Peate D. W. Tectonic Implications of the Composition of Volcanic Arc Magmas. Ann. Rev. Earth Planet. Sci., 1995, 23: 251-286.

[60]

Pearce J. A., Cann J. R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 1973, 19(2): 290-300.

[61]

Pidgeon R. T. Zircons: What We Need to Know. Journal of the Royal Society of Western Australia, 1996, 79(1): 119-122.

[62]

Pollock J. C., Hibbard J. P. Geochemistry and Tectonic Significance of the Stony Mountain Gabbro, North Carolina: Implications for the Early Paleozoic Evolution of Carolinia. Gondwana Research, 2010, 17(2–3): 500-515.

[63]

Rottura A., Bargossi G. M., Caggianelli A., . Origin and Significance of the Permian High-K Cale-Alkaline Magmatism in the Central-Eastern Southern Alps, Italy. Lithos, 1998, 45(1–4): 329-348.

[64]

Rudnick R. L., Gao S. Holland H. D., Turekian K. K. The Composition of the Continental Crust. Treatiseon Geochemistry, 2003, Oxford: Elsevier, 1-64

[65]

Saunders A. D., Storey M., Kent R. W., . Storey B. C., Alabaster T., Pankhurst R. J., . Consequences of Plume-Lithosphere Interactions. Magmatism and the Cause of Continental Breakup, 1992, 41-60.

[66]

Sengör A. M. C., Natal'in B. A. Paleotectonics of Asia: Fragments of a Synthesis. World and Regional Geology, 1996, 486-640.

[67]

Sengör A. M. C., Natal'in B. A., Burtman V. S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia. Nature., 1993, 364(6435): 299-307.

[68]

Shao J. A. Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate, 1991, Beijing: Peking University Press, 1-136.

[69]

Shao J. A., Tang K. D., He G. Q. Early Permian Tectono-Palaeo Geographic Reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 2014, 30(7): 1858-1866.

[70]

Shervais J. W. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 1982, 59(1): 101-118.

[71]

Su Y. Z. Paleozoic Stratigraphy of Nei Mongol Grass Stratigraphical Pravice. Jilin Geology, 1996, 15(3–4): 42-54.

[72]

Sun S. S., McDonough W. F. Saunders A. D. Chemical and Isotope Systematics of Oceanic Basalts: Implications for Mantle Composition and Process. Magmatism in Ocean Basins. Geological Society Publication., 1989, 313-345.

[73]

Tang K. D. Tectonic Development of Paleozoic Fold Belts at the North Margin of the Sino-Korean Craton. Tectonics, 1990, 9(2): 249-260.

[74]

Tang K. D., Yan Z. Y. Regional Metamorphism and Tectonic Evolution of the Inner Mongolian Suture Zone. Journal of Metamorphic Geology, 1993, 11(4): 511-513.

[75]

Tang K. D., Zhang Y. P. Xiao X. C., Tang Y. Q. Tectonic Evolution of Inner Mongolian Suture Zone. Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megasuture, 1991, Beijing: Beijing Scientific and Technical House, 30-54.

[76]

Tang W. H., Zhang Z. C., Li J. F., . Geochemistry of the Carboniferous Volcanic Rocks of Benbatu Formation in Sonid Youqi, Inner Mongolia and Its Geological Significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(2): 321-330.

[77]

Wang Q., Liu X. Y., Li J. Y. Plate Tectonics between Cathaysia and Angaraland in China, 1991, Beijing: Peking University Press, 1-151.

[78]

Wilson M. Igneous Petrogenesis: A Global Tectonic Approach, 1989, 1-466

[79]

Winchester J.A., Floyd P.A. Geochemical Discrimination of Different Magma Seriesand Their Differentiation Products Using Immobile Elements. Chemical Geology, 1977, 20(4): 325-343.

[80]

Windley B. F., Alexeiev D., Xiao W. J., . Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 2007, 164(1): 31-47.

[81]

Wood D. A. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 1980, 50(1): 11-30.

[82]

Wu C., Jiang T., Liu C. F., . Early Cretaceous A-Type Granites and Momineralization, Aershan Area, Eastern Inner Mongolia, Northeastern China: Geochemical and Isotopic Constraints. Int. Geol. Rev., 2014, 56(11): 1357-1376.

[83]

Wu C., Jiang T., Liu W.C., . Early Cretaceous Adakitic Granites and Mineralization of the Yili Porphyry Mo Deposit in the Great Xing’an Range: Implications for the Geodynamic Evolution of Northeastern China. Int. Geol. Rev., 2015, 57(9–10): 1152-1171.

[84]

Wu Y. B., Zheng Y. F. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 2004, 49(15): 1554-1569.

[85]

Xiao W. J., Windley B. F., Hao J., . Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian orogenic belt. Tectonics, 2003, 22(6): 1069-1089.

[86]

Xiao W. J., Shu L. S., Gao J., . Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny. Xinjiang Geology, 2008, 26(1): 4-8.

[87]

Xiao W. J., Windley B. F., Huang B. C. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Science, 2009, 98(6): 1189-1217.

[88]

Xiao W. J., Li S. Z., Santosh M., . Orogenic Belts in Central Asia: Correlations and Connections. J. Asian Earth Sci., 2012, 49(3): 1-6.

[89]

Xiao W. J., Windley B. F., Allen M. B., . Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Res., 2013, 23(4): 1316-1341.

[90]

Xiao W. J., Santosh M. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Res, 2014, 25(4): 1429-1444.

[91]

Xiao W. J., Han C. M., Liu W., . How Many Sutures in the Southern Central Asian Orogenic Belt: Insights from East Xinjiange West Gansu (NW China). Geosci. Front., 2014, 5(4): 525-536.

[92]

Xiao W. J., Sun M., Santosh M. Continental Reconstruction and Metallogeny of the Circum-Junggar Areas and Termination of the Southern Central Asian Orogenic Belt. Geosci. Front., 2015, 6(2): 137-140.

[93]

Xiao W. J., Windley B., Sun S., . A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 2015, 43(16): 1-31.

[94]

Xu B., Chen B. The Structure and Evolution of Paleozoic Orogenic Belt between the North China Plate on the Northern Inner Mongolia and Siberian Plate. Science in China (Series D), 1997, 27(3): 227-232.

[95]

Xu B., Jacques C., Zhang F. Q. Primary Study on Petrology and Geochronology of Blueschists in Sunitezuoqi, Northern Inner Mongolia. Chinese Journal of Geology, 2001, 4: 424-434.

[96]

Xu B., Zhao P., Bao Q. Z., . Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 2014, 30(7): 1841-1857.

[97]

Yan S., Shan Q., Niu H. C., . Petrology and Geochemistry of Late Carboniferous Hornblende Gabbro from the Awulale Mountains, Western Tianshan (NW China): Implicationfor an Arc–nascent Back-arc Environment. Journal of Asian Earth Sciences, 2015.

[98]

Yarmolyuk V. V., Kovalenko V. I., Sal’nikova E. B., . Geochronology of Igneous Rocks and Formation the Late Paleozoic South Mongolia Active Margin of the Siberian Continent. Stratigraphy and Geological Correlation, 2008, 16(2): 162-181.

[99]

Zhai Y. S. Metallogenics Systems of Paleocontinental Margin, 2002, Beijing: Geological Publishing House, 1-416.

[100]

Zhang Q., Qian Q., Wang Y. Geochemical Study on Igneous Rocks of Orogenic Belts. Earth Science Frontiers, 1999, 6(3): 113-119.

[101]

Zhu D. C., Mo X. X., Wang L. Q. Hotspot-Ridge Interaction for the Evolution of Neo-Tethys: Insights from the Late Jurassic-Early Cretaceous Magmatism in Southern Tibet. Acta Petrological Sinica, 2008, 24(2): 225-237.

[102]

Zhu Y. Y., Sun S. H., Mao Q. Geochemistry of the Xilingele Complex, Inner Mongolia: A Historic Record from Rodinia Accretion to Continental Collision after Closure of the Paleo-Asian Ocean. Geological Journal of China Universities, 2004, 10(3): 343-355.

[103]

1: 50000 Regional Geological Survey Reports of Balaguer, Alatengguolegongshe, Houtoumiao, Alatengaobaonongdui, Inner Mongolia. 2013. Beijing: China University of Geosciences (in Chinese)

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/