Petrogenesis of Middle Triassic volcaniclastic rocks from Balochistan, Pakistan: Implications for the break-up of Gondwanaland

Rehanul Haq Siddiqui , M. Qasim Jan , M. Ishaq Kakar , Andrew C. Kerr , Abdul Salam Khan , Ehsanullah Kakar

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (2) : 218 -228.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (2) : 218 -228. DOI: 10.1007/s12583-016-0911-x
Petrology and Petrogeochemistry

Petrogenesis of Middle Triassic volcaniclastic rocks from Balochistan, Pakistan: Implications for the break-up of Gondwanaland

Author information +
History +
PDF

Abstract

Basaltic volcanic conglomerates near the Wulgai village in Balochistan occur in the undivided sedimentary rock unit of the Bagh complex which is the mélange zone beneath the Muslim Bagh ophiolite. The presence of Middle Triassic grey radiolarian chert within the upper and lower horizon of the conglomerates suggests that the lavas, from which these conglomerates were principally derived, were eroded and re-deposited in the Middle Triassic. The Wulgai conglomerate contains several textural and mineralogical varieties of volcanic rocks, such as porphyritic, glomerophyric, intersertal and vitrophyric basalts. The main minerals identified in these samples are augite, olivine, plagioclase (An35-78) leucite and nosean, with apatite ilmenite, magnetite and hematite occurring as accessory minerals. These rocks are mildly to strongly-alkaline with low Mg# and low Cr, Ni and Co contents suggesting that their parent magma had undergone considerable fractionation prior to eruption. Trace element-enriched mantle-normalized patterns with marked positive Nb anomalies are consistent with 10%-15% melting of an enriched mantle source in a within-plate tectonic setting. It is proposed that this Middle Triassic intra-plate volcanism may represent mantle plume-derived melts related to the Late Triassic rifting of micro-continental blocks (including Afghan, Iran, Karakorum and Lhasa) from the northern margin of Gondwana.

Keywords

Middle Triassic / Wulgai volcaniclastics / juvenile Ceno-Tethys

Cite this article

Download citation ▾
Rehanul Haq Siddiqui, M. Qasim Jan, M. Ishaq Kakar, Andrew C. Kerr, Abdul Salam Khan, Ehsanullah Kakar. Petrogenesis of Middle Triassic volcaniclastic rocks from Balochistan, Pakistan: Implications for the break-up of Gondwanaland. Journal of Earth Science, 2017, 28(2): 218-228 DOI:10.1007/s12583-016-0911-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed Z., McCormick G. R. A Newly Discovered Kimberlitic Rock from Pakistan. Mineralogical Magazine, 1990, 54(377): 537-546.

[2]

Aitchison J. C., Ali J. R., Davis A. M. When and Where did India and Asia Collide. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): 1978-2012.

[3]

Ansari M. R., Abedini M. V., Zadeh A. D., . Geochemical Constrain on the Early Cretaceous, OIB-Type Alkaline Volcanic Rocks in Kojor Volcanic Field, Central Alborz Mountain, North of Iran. Australian Journal of Basic and Applied Sciences, 2011, 5(10): 913-925.

[4]

Anwar M., Fatmi A. N., Hyderi I. H. Stratigraphic Analysis of the Permo–Triassic and Lower Middle Jurassic Rocks from the “Axial Belt” Region of the Northern Baloch1stan, Pakistan. The Geological Bulletin of the Punjab University, 1993, 28: 1-20.

[5]

Arevalo J. R., McDonough W. F. Chemical Variations and Regional Diversity Observed in MORB. Chemical Geology, 2010, 271(1–2): 70-85.

[6]

Baker B. H. Outline of the Petrology of the Kenya Rift Alkaline Province. Geological Society London Special Publications, 1987, 30(1): 293-311.

[7]

Boulin J. Structure d’Afghanistan Sutures Periindiennes et Tethys Orientale. CR Academy of Science Paris Series D, 1981, 292: 239-242.

[8]

Boulin J. Hercynian and Eocimmerian Events in Afghanistan and Adjoining Regions. Tectonophysics, 1988, 148(3–4): 253-278.

[9]

Boulin J. Neocimmerian Events in Central and Western Afghanistan. Tectonophysics, 1990, 175(4): 285-315.

[10]

Brookfield M. E. The Himalayan Passive Margin from Precambrian to Cretaceous Times. Sedimentary Geology, 1993, 84(1–4): 1-35.

[11]

Celâl Şengör A. M. Mid-Mesozoic Closure of Permo-Triassic Tethys and Its Implications. Nature, 1979, 279(5714): 590-593.

[12]

Fisk M. R., Upton B. G. J., Ford C. E. Geochemical and Experimental Study of the Genesis of Magmas of Reunion Island, Indian Ocean. Journal of Geophysical Research, 1988, 93 B5 4933

[13]

Fitton J. G., Saunders A. D., Norry M. J., . Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 1997, 153(3–4): 197-208.

[14]

Floyd P. A. Oceanic Islands and Seamounts, 1991, In Oceanic Basalts: Springer Netherlands

[15]

Frey F. A., Green D. H., Roy S. D. Integrated Model for Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilite from Southeastern Australia, Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 1978, 19(3): 463-513.

[16]

Gansser, A., 1979. Reconnaissance Visit to the Ophiolites in Baluchistan, In: Farah, A, DeJong, K. A., eds., Geodynamics of Pakistan: 193–213

[17]

Gill J. B. Orogenic Andesites and Plate Tectonics, 1981, Berlin: Springer, 189

[18]

Govindaraju K. Working Group on Analytical Standards of Minerals, Ores and Rocks. Geostandards Newsletter, Special Issue, 1989, 13 114.

[19]

Green D. H. Experimental Studies on a Modal Upper Mantle Composition at High Pressure under Water Saturated and Water under Saturated Condtions. Canadian Mineralogist, 1976, 14: 255-268.

[20]

Green O. R., Searle M. P., Corfield R. I., . Cretaceous-Tertiary Carbonate Platform Evolution and the Age of the India-Asia Collision Along the Ladakh Himalaya (Northwest India). The Journal of Geology, 2008, 116(4): 331-353.

[21]

Hanson G. N., Langmuir C. H. Modelling of Major Elements in Mantle-Melts Systems Using Trace Element Approaches. Geochimca et Cosmochem Acta, 1978, 42(6): 725-742.

[22]

Hastie A. R., Kerr A. C., Pearce J. A., . Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 2007, 48(12): 2341-2357.

[23]

Humphris S. E., Thompson G., Schilling J. G., . Petrological and Geochemical Variation along the Mid Atlantic Ridge between 46 ºS and 32 ºS: Influence of Tristen Da Cunha Mantle Plume. Geochemica Acta, 1985, 49(6): 1445-1464.

[24]

Jones A. G. Reconnaissance Geology of Part of West Pakistan, 1961, Government of Canada, Toronto: A Colombo Plan Cooperative Project, 550.

[25]

Kakar M. I., Kerr A. C., Mahmood K., . Supra-subduction Zone Tectonic Setting of the Muslim Bagh Ophiolite, Northwestern Pakistan: Insights from Geochemistry and Petrology. Lithos, 2014, 202(4): 190-206.

[26]

Kakar M. I., Collins A. S., Mahmood K., . U-Pb Zircon Crystallization Age of the Muslim Bagh Ophiolite: Enigmatic Remains of an Extensive Pre-Himalayan Arc. Geology, 2012, 40(12): 1099-1102.

[27]

Kazmin V. G. Collision and Rifting in the Tethyan Ocean: Geodynamic Implications. Tectonophysics, 1991, 196(3–4): 371-384.

[28]

Kerr, A. C., 2014. Oceanic Plateaus. In: Holland, H. C., Turekian K. eds., Treatise on Geochemistry 2nd Edition. Elsevier. 631–667.

[29]

Kerr A. C., Khan M., Mahoney J. J., . Late Cretaceous Alkaline Sills of the South Tethyan Suture Zone, Pakistan: Initial Melts of the Réunion Hotspot. Lithos, 2010, 117(1–4): 161-171.

[30]

Kimura K., Mengal J. M., Siddiqui M. R. H., . Geology of the Muslim Bagh Ophiolite and Associated Bagh Complex in Northwestern Balochistan, Pakistan. Proceedings of Geoscience Colloquium, 1993, 5 36.

[31]

Kojima S., Naka T., Kimura K., . Mesozoic Radiolarians from the Bagh Complex in the Muslim Bagh Area Pakistan: Their Significance in Reconstructing the Geologic History of Ophiolites Along the Neo Tethys Suture Zone. Bulletin Geological Survey of Japan, 1994, 45(2): 63-97.

[32]

Luo T., Chen S., Liao Q. A., . Geochronology, Geochemistry and Geological Significance of the Late Carboniferous Bimodal Volcanic Rocks in the Eastern Junggar. Earth Science, 2016, 41(11): 1845-1862.

[33]

Mahoney J. J., Duncan R. A., Khan W., . Cretaceous Volcanic Rocks of the South Tethyan Suture Zone, Pakistan: Implications for the Réunion Hotspot and Deccan Traps. Earth and Planetary Science Letters, 2002, 203(1): 295-310.

[34]

Mengal J. M., Kimura K., Siddiqui M. R. H., . The Lithology and Structure of a Mesozoic Sedimentary-Igneous Assemblage Beneath the Muslim Bagh Ophiolite, Northern Balochistan, Pakistan. Bulletin of Geological Survey of Japan, 1994, 45: 51-61.

[35]

Meschede M. A Method of Discriminating between Different Types of Mid-Oceanic Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 1986, 56(3/4): 207-218.

[36]

Metcalfe I. Gondwana Dispersion and Asian Accretion. Journal of Geology Series, 1995, B: 223-266.

[37]

Naka T., Kimura K., Mengal J. M., . Mesozoic Sedimentary-Igneous Complex, Bagh Complex in Muslim Bagh Area, Pakistan. Proceedings of Geoscience Colloquium, 1996, 16: 47-94.

[38]

Otsuki K., Anwar M., Mengal J. M., . Breakup of Gondwanaland and Emplacement of Ophiolite Complex in Muslim Bagh Area Balochistan, Pakistan, 1989, 33-57.

[39]

Pearce J. A. Throp R. S. Trace Elements Characteristics of Lavas from Destructive Plate Boundaries. Andesites: Orogenic Andesites and Related Rocks, 1982, New York: John Wiley and Sons, 525-548.

[40]

Pearce J. A., . Bailes A. H., Christiansen E. H., Galley A. G., . A User's Guide to Basalt Discrimination Diagrams. Trace Element Geochemistry of Volcanic Rocks; Applications for Massive Sulphide Exploration, 1996, 79-113.

[41]

Pearce J. A., Cann J. R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Elements Analysis. Earth and Planetary Science Letters, 1973, 19(2): 290-300.

[42]

Pearce J. A., Gale G. H. Identification of Ore-Deposition Environment from Trace-Element Geochemistry of Associated Igneous Host Rocks: Geological Society London. Special Publication, 1977, 7(1): 14-24.

[43]

Pearce J. A., Norry M. Petrogenetic Implications of Ti, Zr, Y and Nb Variation in Volcanic Rocks. Contribution to Mineralogy and Petrology, 1979, 69(1): 33-47.

[44]

Perfit M. R., Gust D. A., Bence A. E., . Chemical Characteristics of Island Arc Basalts: Implications for Mantle Sources. Chemical Geology, 1980, 30(3): 227-256.

[45]

Price R. C., Johnson R. W., Gray C. M., . Geochemistry of Phonolites and Trachytes from the Summit Region of Mt. Kenya. Contribution to Mineralogy and Petrology, 1985, 89(4): 394-409.

[46]

Rehman H. U., Seno T., Yamamoto H., . Timing of collision of the Kohistan-Ladakh Arc with India and Asia: Debate. Island Arc, 2011, 20(3): 308-328.

[47]

Saunders, A. D., Tarney, J., 1991. Back-Arc Basins. In: Floyd. P. A. ed., Oceanic Basalts. Blackie. 219–263

[48]

Sawada Y., Nageo K., Siddiqui R.H., . K-Ar Ages of the Mesozoic Igneous and Metamorphic Rocks from the Muslim Bagh Area, Pakistan. Proceedings of Geoscience Colloquium Geoscience Laboratory, Geological Survey of Pakistan, 1995, 12: 73-90.

[49]

Schilling J. G., Thompson G., Kingsley R., . Hotspot-Migration Ridge Interaction in the South Atlantic. Nature, 1985, 313: 187-191.

[50]

Schawarzer R. R., Roger J. J. W. A Worldwide Comparison of Alkaline-Olivine Basalt and Their Differentiation Trends. Earth and Planetary Science Letters, 1974, 23(3): 286-296.

[51]

Sengör A. M. C., Altinar D., Cin A., . Charles M. G. A., Hallan A., . Origin and Assembly of the Tethyside Orogenic Collage at the Expenses of Gondwanaland. Geological Society Special Publication, 1988, 119-181.

[52]

Siddiqui R. H., Aziz A., Mengal J. M., . Geology, Petrochemistry and Tectonic Evolution of Muslim Bagh Ophiolite Complex Balochistan, Pakistan. Geologica, 1996, 3: 11-46.

[53]

Siddiqui R. H., Brohi I. A., Haidar N. Geochemistry, Petrogenesis and Crustal Contamination of Hotspot Related Volcanism on the North Western Margin of Indian Continent and Its Implications for Paleo-sedimentary Environments. Sindh University Research Journal (Science Series), 2010, 42(2): 15-34.

[54]

Siddiqui R. H., Jan M. Q., Asif Khan M. Petrogenesis of Late Cretaceous Lava Flows from a Ceno-Tethyan Island Arc: The Raskoh Arc, Balochistan, Pakistan. Journal of Asian Earth Sciences, 2012, 59(3): 24-38.

[55]

Siddiqui R. H., Jan M. Q., Kakar M. I., . Late Cretaceous Mantle Plume Activity in Ceno-Tethys: Evidences from the Hamrani Volcanic Rocks, Western Pakistan. Arabian Journal of Geosciences, 2016, 9(1): 1-11.

[56]

Siddiqui R. H., Mengal J. M., Hoshino K., . Back-Arc Basin Signatures from the Sheeted Dykes of Muslim Bagh Ophiolite Complex, Balochistan, Pakistan. Sindh University Research Journal, 2011, 43(1): 51-62.

[57]

Staudigel H. Hydrothermal Alteration Processes in the Oceanic Crust. Treatise on Geochemistry, 2003, 4: 511-535.

[58]

Stöcklin J. Sengör A. M. C. Tethys Evolution in the Afghanistan-Pamir-Pakistan Region. Tectonic Evolution of the Tethyan Region, 1989, Netherlands: Spinger, 241-264

[59]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Ocean Basalt, Implication for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[60]

Tatsumi Y., Eggins S. Subduction Zone Magmatism, 1995, Oxford: Blackwell Science, 211.

[61]

Treloar P. J., Izatt C. N. Tectonics of the Himalayan Collision between the Indian Plate and the Afghan Block: A Synthesis: Geological Society, London. Special Publications, 1993, 74(1): 69-87.

[62]

Verma S. P., Guevara M., Agrawal S. Discriminating Four Tectonic Settings: Five New Geochemical Diagrams for Basic and Ultrabasic Volcanic Rocks Based on Log-Ratio Transformation of Major-Element Data. Journal of Earth System Science, 2006, 115(5): 485-528.

[63]

Weaver B. L., Tarney J., Windley B. Geochemistry and Petrogenesis of the Fiskenaesset Anorthosite Complex Southern West Greenland: Nature of the Parent Magma. Geochimica et Cosmochimica Acta, 1981, 45(5): 711-725.

[64]

Weaver B. L., Wood D. A., Tarney J., . Geochemistry of Ocean Island Basalts from the South Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha, Geological Society, London. Special Publications, 1987, 30(1): 253-267.

[65]

Wilkinson J. F. G., Le Maitre R. W. Upper Mantle Amphiboles and Micas and TiO2, K2O and P2O5 Abundances and 100 Mg/(Mg+Fe2+) Ratios of Common Basalts and Undepleted Mantle Compositions. Journal of Petrology, 1987, 28(1): 37-73.

[66]

Winchester J. A., Floyd P. A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 1977, 20(4): 325-343.

[67]

Xiong F. H., Ma C. Q., Jiang H. A. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 2016, 26(3): 474-490.

[68]

Zaman H., Torii M. Paleomagnetic Study of Cretaceous Red Beds from the Eastern Hindukush Ranges, Northern Pakistan; Paleoarc Construction of the Kohistan-Karakoram Composite Unit before the India-Asia Collision. Geophysical Journal International, 1999, 136(3): 719-738.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/