Paleogeothermal reconstruction and thermal evolution modeling of source rocks in the Puguang gas field, northeastern Sichuan Basin

Chuanqing Zhu , Nansheng Qiu , Huanyu Cao , Song Rao , Shengbiao Hu

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (5) : 796 -806.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (5) : 796 -806. DOI: 10.1007/s12583-016-0909-8
Article

Paleogeothermal reconstruction and thermal evolution modeling of source rocks in the Puguang gas field, northeastern Sichuan Basin

Author information +
History +
PDF

Abstract

The thermal history and organic matter maturity evolution of the source rocks of boreholes in the Puguang gas field were reconstructed. An integrated approach based on vitrinite reflectance and apatite fission track data was used in the reconstruction. Accordingly, the geothermal conditions of gas accumulation were discussed in terms of the geological features of reservoirs in the northeastern Sichuan Basin. The strata reached their maximum burial depth in the Late Cretaceous era and were then uplifted and denuded continuously to the present day. The geothermal gradient and heat flow in the Late Cretaceous era were approximately 30.0 °C/km and 66 mW/m2, respectively, which were both higher than those at present. The tectonothermal evolution from the Late Cretaceous era to the present is characterized by denudation and cooling processes with an erosion thickness of ~2.7 km. In addition to the Triassic era, the Jurassic era represents an important hydrocarbon generation period for both Silurian and Permian source rocks, and the organic matter maturity of these source rocks entered into a dry gas period after oil generation. The thermal conditions are advantageous to the accumulation of conventional and unconventional gas because the hydrocarbon generation process of the source rocks occurs after the formation of an effective reservoir cap. In particular, the high geothermal gradient and increasing temperature before the denudation in the Late Cretaceous era facilitated the generation of hydrocarbons, and the subsequent cooling process favored its storage.

Keywords

paleogeothermal reconstruction / apatite fission track / vitrinite reflectance / thermal evolution of source rocks / Puguang gas field

Cite this article

Download citation ▾
Chuanqing Zhu, Nansheng Qiu, Huanyu Cao, Song Rao, Shengbiao Hu. Paleogeothermal reconstruction and thermal evolution modeling of source rocks in the Puguang gas field, northeastern Sichuan Basin. Journal of Earth Science, 2016, 27(5): 796-806 DOI:10.1007/s12583-016-0909-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armstrong P. A. Thermochronometers in Sedimentary Basins. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 499-525.

[2]

Braun R. L., Burnham A. K. Analysis of Chemical Reaction Kinetics Using A Distribution of Activation Energies and Simpler Models. Energy & Fuels, 1987, 1(2): 153-161.

[3]

Bray R. J., Green P. F., Duddy I. R. Thermal History Reconstruction Using Apatite Fission Track Analysis and Vitrinite Reflectance: A Case Study from the UK East Midlands and Southern North Sea. Geological Society, London, Special Publications, 1992, 67(1): 3-25.

[4]

Burnham A. K., Braun R. L., Gregg H. R., . Comparison of Methods for Measureing Kerogen Pyrolysis Rates and Fitting Kinetic Parameters. Energy & Fuels, 1987, 1: 452-458.

[5]

Burnham A. K., Oh M. S., Craford R. W. Pyrolysis of Argonne Premium Coals: Activation Energy Distribution and Related Chemistry. Energy & Fuels, 1989, 3(1): 42-55.

[6]

Burnham A. K., Sweeney J. J. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 1989, 53(10): 2649-2657.

[7]

Cai L. G., Rao D., Pan W. L., . The Evolution Model of the Puguang Gas Field in Northeast of Sichuan. Petroleum Geology & Experiment, 2005, 27(5): 462-467.

[8]

Corrigan J. Inversion of Apatite Fission Track Data for Thermal History Information. Journal of Geophysical Research, 1991, 96: 347-360.

[9]

David D., Antia J. Kinetic Method for Modeling Vitrinite Reflectance. Geology, 1986, 14(7): 606-608.

[10]

Duddy I. R., Green P. F., Lastett G. M. Thermal Annealing of Fission Tracks in Apatite, 3. Aariable Temperature Behaviour. Chemical Geology, 1988, 73: 25-38.

[11]

Feng Y. Y., Chu W., Sun W. J. Adsorption Characteristics of Methane on Coal under Reservoir Temperatures. Journal of China Coal Society, 2012, 37(9): 1488-1492.

[12]

Fitzgerald P. G., Gleadow A. J. W. New Approaches in Fission Track Geochronology as a Tectonic Tool: Examples from the Transantarctic Mountains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 1990, 17(3): 351-357.

[13]

Fitzgerald P. G., Stump E., Redfield T. F. Late Cenozoic Uplift of Denali and Its Relation to Relative Plate Motion and Fault Morphology. Science, 1993, 259(5094): 497-499.

[14]

Gallagher K. Evolving Temperature Histories from Apatite Fission-Track Data. Earth and Planetary Science Letters, 1995, 136: 421-435.

[15]

Gleadow A. J. W., Duddy I. R., Green P. F., . Fission Track Analysis: A New Tool for the Evaluation of Thermal Histories and Hydrocarbon Potential. Australian Petroleum Exploration Association Journal, 1983, 23: 93-102.

[16]

Gleadow A. J. W., Fitzgerald P. G. Uplift History and Structure of the Transantarctic Mountains: New Evidence from Fission Track Dating of Basement Apatites in the Dry Valleys Area Southern Victoria Land. Earth and Planetary Science Letters, 1987, 82(1–2): 1-14.

[17]

Gleadow A. J. W. Fission-Track Dating Methods: What Are the Real Alternatives?. Nuclear Tracks, 1981, 5(1–2): 3-14.

[18]

Gong L., Wang C. Y., Yang Y. G., . Comparion of Reservoir-Forming Conditions and Objective Exploration Zones of Shale Gas in Lower Silurian Longmaxi Formation of Southwest and Northeast Sichuan Basin. Geological Science and Technology Information, 2014, 33(5): 128-133.

[19]

Green P. F., Duddy I. R., Gleadow A. J. W., . Fission Track Annealing IN Apatite: Track Length Measurements and the Form of the Arrhenius Plot. Nuclear Tracks, 1985, 10: 323-328.

[20]

Green P. F., Duddy I. R., Gleadow A. J. W., . Thermal Annealing of Fission Tracks in Apatite, 1. A Qualitative Description. Chemical Geology, 1986, 59: 237-253.

[21]

He L. J., Xu H. H., Wang J. Y. Thermal Evolution and Dynamic Mechanism of the Sichuan Basin during the Early Permian–Middle Triassic. Science China: Earth Sciences, 2011, 54(12): 1948-1954.

[22]

Hu S. B., Fu M. X., Yang S. C., . Palaeogeothermal Response and Record of Late Mesozoic Lithospheric Thinning in the Eastern North China Craton. Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia, 2007, 280: 267-280.

[23]

Huang J. Z., Chen S. J., Song J. R., . Hydrocarbon Source Systems and Formation of Gas Fields in Sichuan Basin. Science in China (Series D), 1996, 40(1): 32-42.

[24]

Huang J. Z. Prospect of Source Rock Gas Based on Shale Gas Accumulation Patterns: A Cas Study from the Low Permian in the Sichuan Basin. Natural Gas Industry, 2012, 32(11): 4-9.

[25]

Jarvie D. M., Hill R. J., Ruble T. E., . Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 2007, 91(4): 475-499.

[26]

Ketcham R. A., Donelick R. A., Carlson W. D. Variabilityof Apatitefission Track Annealing Kinetics: III. Extrapolation to Geological Timescales. American Mineralogist, 1999, 84(9): 1235-1255.

[27]

Ketcham R. A. Forward and Inverse Modeling of Low Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 2005, 58: 275-314.

[28]

Ketcham R. A., Carter A., Donelick R. A., . Improved Modeling of Fission-Track Annealing in Apatite. American Mineralogist, 2007, 92: 799-810.

[29]

Larter S. Chemical Models of Vitrinite Reflectance Evolution. Geologische Rundschau, 1989, 78(1): 349-359.

[30]

Lerche I., Yarzab R. F., Kendall C. G. Determination of Paleoheat Flux from Vitrinite Reflectance Data. AAPG Bulletin, 1984, 68(11): 1704-1717.

[31]

Lerche I. Basin Analysis: Quantitative Methods Volume I, 1990, San Diego: Academic Press Inc., 74-96.

[32]

Liang D. G., Guo T. L., Chen J. P., . Distribution of Four Suits of Regional Marine Source Rocks. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.

[33]

Liu D. H., Xiao X. M., Tian H., . Multiple Types of High Density Methane Inclusions and their Relationships with Exploration and Assessment of Oil-Cracked Gas and Shale Gas Discovered in NE Sichuan. Earth Science Frontiers, 2013, 20(1): 64-71.

[34]

Loucks R. G., Reed R. M., Ruppel S. C., . Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79(12): 848-861.

[35]

Lu Q. Z., Hu S. B., Guo T. L., . The Background of the Geothermal Field for Formation of Abnormal High Pressure in the Northeastern Sichuan Basin. Chinese Journal of Geophysics, 2005, 48: 1110-1116.

[36]

Lutz T. M., Omar G. Inverse Methods of Modeling Thermal Histories from Apatite Fission Track Data. Earth and Planetary Science Letters, 1991, 104: 181-195.

[37]

Ma Y. S., Cai X. Y., Guo T. L., . The Controlling Factors of Oil and Gas Charging and Accumulation of Puguang Gas Field in the Sichuan Basin. Chinese Science Bulletin, 2007, 52: 193-200.

[38]

Ma Y. S., Guo X. S., Guo T. L., . The Puguang Gas Field: New Giant Discovery in the Mature Sichuan Basin, Southwest China. AAPG Bulletin, 2007, 91: 627-643.

[39]

Ma Y. S. Formation Mechanism of Deep-Buried Carbonate Reservoir and Its Model of Three-Element Controlling Reservoir: A Case Study from the Puguang Oil Field in Sichuan. Acta Geologica Sinica, 2010, 84(8): 1087-1094.

[40]

Mei L. F., Liu Z. Q., Tang J. G., . Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei Eastern Sichuan Provinces of China: Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Science—Journal of China University of Geosciences, 2010, 35(2): 161-174.

[41]

Naeser C. W. Scholle P. A., Schluger P. R. Thermal History of Sedimentary Basins: Fission Track Dating of Subsurface Rocks. Aspects of Diagenesis, 1979, 109-112

[42]

O’Sullivan P. B. Thermochronology, Denudation and Variations in Palaeosurface Temperature: A Case Study from the North Slope Foreland Basin, Alaska. Basin Research, 1999, 11: 191-204.

[43]

Rao S., Tang X. Y., Zhu C. Q., . The Application of Sensitivity Analysis in the Source Rock Maturity History Simulation: An Example from Palaozioc Marine Source Rock of Puguang-5 Well in the Northeast of Sichuan Basin. Chinese Journal of Geology, 2011, 46(1): 213-225.

[44]

Qiu N. S., Qin J. Z., Brent I. A. M. Tectonothermal Evolution of the Northeastern Sichuan Basin: Constraints from Apatite and Zircon (U-Th)/He Ages and Vitrinite Reflectance Data. Geological Journal of Chinese Universities, 2008, 14: 223-230.

[45]

Rao S., Zhu C. Q., Wang Q., . Thermal Evolution Patterns of the Sinian-Lower Paleozoic Source Rocks in the Sichuan Basin, Sourthwest China. Chinese Journal of Geophysics, 2013, 56(5): 1549-1559.

[46]

Ross D. J. K., Bustin R. M. Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51-75.

[47]

Schieber J. Shale Microfabrics and Pore Development: An Overview with Emphasis on the Importance of Depositional Processes: Canadian Society of Petroleum Geologists, Canadian Society of Exploration Geophysicists, and Canadian Well Logging Society Joint Annual Convention, 2011.

[48]

Shen C. B., Mei L. F., Guo T. L. Fission Track Analysis of Mesozoic–Cenozoic Thermal History in Northeast Sichuan Basin. Natural Gas Industry, 2007, 27: 24-26.

[49]

Sweeney J. J., Burnham A. K. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 1990, 74: 1559-1570.

[50]

Liu W. H., Qin J. Z., . Dynamic Transformation Mechanism For Hydrocarbon Generation from Multiple Sources in Deep-Buried Marine Carbonates in the Northeastern Sichuan Basin: A Case Study from the Puguang Gas Field. Acta Petrologica Sinica, 2012, 28(3): 895-904.

[51]

Qin J. Z., Fu X. D., . Hydrocarbon Source Rocks Evaluation of the Upper Permian Wujiaping Formation in Northeast Sichuan Area. Journal of Palaeogeography, 2010, 12(3): 1-12.

[52]

Tian Y. T., Zhu C. Q., Xu M., . Post-Early Cretaceous Denudation History of the Northeastern Sichuan Basin: Constraints from Low-Temperature Thermochronology Profiles. Chinese Journal Geophysics, 2011, 54(3): 807-816.

[53]

Tian, Y. T., Kohn, B. P., Zhu, C. Q., et al.,2012. Post-Orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China. Basin Research, 24: 70–90

[54]

Tissot B. P., Pelect R. U. Thermal History of Sedimentary Basin Maturation Indices and Kinetics of Oil and Gas Generation. AAPG Bulletin, 1987, 71: 1445-1466.

[55]

Tissot B. P., Welte D. H. Petroleum Formation and Occurrence, 1984

[56]

Tissot B., Espitalie J. L’Evolution Thernique de la Matiere Organique des Sediments: Applications Dune Simulation Mathematique. Oil & Gas Science and Technology, 1975, 30: 743-778.

[57]

Wu Q., Peng J. N. Burial and Thermal Histories of Northeastern Sichuan Basin: A Case Study of Well Puguang 2. Petroleum Geology & Experiment, 2013, 35(2): 133-138.

[58]

Xu M., Zhu C. Q., Tian Y. T., . Well Temperature Logging and Characteristics of Subsurface Temperature in Sichuan Basin. Chinese Journal of Geophysics, 2011, 54: 1052-1060.

[59]

Zhang G. C. Analysis of the Regular Distribution of Oil and Gas Fields in China Based on the Theory of Hydrocarbon Generation Controlled by Source Rocks and Geothermal Heat. Natural Gas Industry, 2014, 34(5): 1-28.

[60]

Zhang G. C. Co-Control of Source and Heat: The Generation and Distribution of Hydrocarbons Controlled by Source Rocks and Heat. Acta Petrolei Sinica, 2012, 33(5): 723-738.

[61]

Zheng R. C., Geng W., Zheng C., . Genesis of Dolostone Reservoir of Feixianguan Formation in Lower Triassic of Northeast Sichuan Basin. Acta Petrolei Sinica, 2008, 29(6): 815-821.

[62]

Zhou Y., Jin Z. J., Zhu D. Y., . Current Status and Progress in Research of Hydrocarbon Cap Rocks. Petroleum Geology & Experiment, 2013, 34(3): 234-245.

[63]

Zhu C. Q., Xu M., Yuan Y. S., . Paleogeothermal Response and Record of the Effusing of Emeishan Basalts in the Sichuan Basin. Chinese Science Bulletin, 2010, 55(10): 949-956.

[64]

Zhu C. Q., Tian Y. T., Xu M., . The Effect of Emeishan Supper Mantle Plume to the Thermal Evolution of Source Rocks in the Sichuan Basin. Chinese Journal of Geophysics, 2010, 53(1): 119-127.

[65]

Zhu C. Q., Hu S. B., Qiu N. S., . Thermal History of the Sichuan Basin, SW China: Evidence from Deep Boreholes. Science China: Earth Sciences, 2016, 59(1): 70-82.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/