Trace and rare earth element characteristics in Fe-Mn carbonates associated with stratiform Ag-Pb-Zn mineralization from the Lengshuikeng ore district, Jiangxi Province: Implications for their genesis and depositional environment

Qing Li , Shaoyong Jiang

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 571 -583.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 571 -583. DOI: 10.1007/s12583-016-0908-9
Article

Trace and rare earth element characteristics in Fe-Mn carbonates associated with stratiform Ag-Pb-Zn mineralization from the Lengshuikeng ore district, Jiangxi Province: Implications for their genesis and depositional environment

Author information +
History +
PDF

Abstract

We performed a systematic trace and rare earth element analysis for the bedded Fe-Mn carbonate rocks related to the stratiform Ag-Pb-Zn mineralization in the Lengshuikeng ore district, Jiangxi Province, South China. Three types of Fe-Mn carbonates are distinguished, namely, the massive, breccia, and vein types. Both carbonate and silicate fractions in the samples are analyzed for their trace and rare earth element concentrations using a step acid-leaching technique. Our results show that the carbonate fractions in the massive type samples have the lowest REE concentrations but pronounced positive Eu and Y anomalies with Eu/Eu* value from 1.3 to 6.2 and Y/Ho value from 40.1 to 59.5, and similar characteristics are also shown for the silicate fractions in the massive type samples (Eu/Eu*=1.0–6.7, Y/Ho=20.7–55.1). These REE characteristics are similar to those of Sedex type massive sulfide deposits worldwide, and we suggest that the massive type Fe-Mn carbonate rocks were likely formed from an exhalative volcanic-hydrothermal fluid feeding the depression basin of a volcanic lake. The high concentrations of redox-sensitive elements and ratios such as U/Th, V/Cr and V/(V+Ni) indicate a dysoxic environment for the Fe-Mn carbonate deposition. In contrast, the breccia type and vein type Fe-Mn carbonate samples show different trace and rare earth element features from those of massive type samples, and they are more similar to the volcanic rocks and magmatic-hydrothermal fluids in the Lengshuikeng ore district and may reflect strong overprinting from volcanic and sub-volcanic magmatism related to the porphyry type mineralization in the district.

Keywords

Fe-Mn carbonate / trace and rare earth elements / stratiform Ag-Pb-Zn orebody / Lengshuikeng ore district / South China

Cite this article

Download citation ▾
Qing Li, Shaoyong Jiang. Trace and rare earth element characteristics in Fe-Mn carbonates associated with stratiform Ag-Pb-Zn mineralization from the Lengshuikeng ore district, Jiangxi Province: Implications for their genesis and depositional environment. Journal of Earth Science, 2016, 27(4): 571-583 DOI:10.1007/s12583-016-0908-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Algeo T. J., Maynard J. B. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 2004, 206(3/4): 289-318.

[2]

Anderson R. F., Fleisher M. Q., LeHuray A. P. Concentration, Oxidation State, and Particulate Flux of Uranium in the Black Sea. Geochimica et Cosmochimica Acta, 1989, 53(9): 2215-2224.

[3]

Arthur M. A., Sageman B. B. Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 499-551.

[4]

Barrett T. J., Jarvis I., Jarvis K. E. Rare Earth Element Geochemistry of Massive Sulfides-Sulfates and Gossans on the Southern Explorer Ridge. Geology, 1990, 18 7 583

[5]

Bau M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333.

[6]

Bau M., Dulski P. Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behaviour during Near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater. Chemical Geology, 1999, 155(1/2): 77-90.

[7]

Calvert S. E., Pedersen T. F. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 1993, 113(1/2): 67-88.

[8]

Canet C., Alfonso P., Melgarejo J. C., . Geochemical Evidences of Sedimentary-Exhalative Origin of the Shale-Hosted PGE-Ag-Au-Zn-Cu Occurrences of the Prades Mountains (Catalonia, Spain): Trace-Element Abundances and Sm-Nd Isotopes. Journal of Geochemical Exploration, 2004, 82(1–3): 17-33.

[9]

Clark S. H. B., Gallagher M. J., Poole F. G. World Barite Resources: A Review of Recent Production Patterns and a Genetic Classification. Transactions of the Institution of Mining and Metallurgy (Section B: Applied Earth Science), 1991, 99: B125-B132.

[10]

Clark S. H. B., Poole F. G., Wang Z. C. Comparison of Some Sediment-Hosted, Stratiform Barite Deposits in China, the United States, and India. Ore Geology Reviews, 2004, 24(1/2): 85-101.

[11]

Davies J. F., Prevec S. A., Whitehead R. E., . Variations in REE and Sr-Isotope Chemistry of Carbonate Gangue, Castellanos Zn-Pb Deposit, Cuba. Chemical Geology, 1998, 144(1/2): 99-119.

[12]

Hatch J. R., Leventhal J. S. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 1992, 99(1–3): 65-82.

[13]

Horstmann U. E., Verwoerd W. J. Carbon and Oxygen Isotope Variations in Southern African Carbonatites. Journal of African Earth Sciences, 1997, 25(1): 115-136.

[14]

Huang Z. Q. Metallogeny of the Carbonate Ag Deposit in Lengshuikeng. Geology of Jiangxi, 1992, 6(1): 1-9.

[15]

Huang Z. Q. The Mineralization Conditions and Deposit Characteristics of Lengshuikeng Silver Orefield in Jiangxi, China. Journal of Precious Metallic Geology, 1993, 2(4): 284-291.

[16]

Jiang S. Y., Han F., Shen J. Z., . Chemical and Rb-Sr, Sm-Nd Isotopic Systematics of Tourmaline from the Dachang Sn-Polymetallic Ore Deposit, Guangxi Province, P.R. China. Chemical Geology, 1999, 157(1/2): 49-67.

[17]

Jones B., Manning D. A. C. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 1994, 111(1–4): 111-129.

[18]

Klinkhammer G. P., Elderfield H., Edmond J. M., . Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113.

[19]

Kloss T. J., Dornbos S. Q., Chen J. Y., . High-Resolution Geochemical Evidence for Oxic Bottom Waters in Three Cambrian Burgess Shale-Type Deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 90-95.

[20]

Krasnov S., Stepanova T., Stepanov M. Chemical Composition and Formation of a Massive Sulfide Deposit, Middle Valley, Northern Juan de Fuca Ridge (Site 856). Ocean Drilling Program, 1994, 139: 353-372.

[21]

Lu R., Mao J. W., Gao J. J., . Geological Characteristics and Occurrence of Silver in Xiabao Ag-Pb-Zn Deposit, Lengshuikeng Ore Field, Jiangxi Province, East China. Acta Petrologica Sinica, 2012, 28(1): 105-121.

[22]

Luo X. Q., Zhang X. H., Xu Y. G., . A Metallogenic Model for Bedded Orebodies in the Lengshuikeng Ag-Pb-Zn Deposit, Jiangxi and Deep Exploration Direction. Geology and Exploration, 2013, 49(6): 1078-1087.

[23]

Meng X. J., Dong G. Y., Liu J. G. Jiangxi Lengshuikeng Pb-Zn-Ag Porphyry Deposit, 2007.

[24]

Meng L. F., Li Z. X., Chen H. L., . Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 2012, 132/133: 127-140.

[25]

Meng X. J., Xu W. Y., Yang Z. S., . Time Limit of Volcanic-Magmatic Action in Lengshuikeng Orefield, Jiangxi: Evidence from SHRIMP Zircon U-Pb Ages. Mineral Deposits, 2012, 31: 831-838.

[26]

Mills R. A., Elderfield H. Rare Earth Element Geochemistry of Hydrothermal Deposits from the Active TAG Mound, 26°N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 1995, 59(17): 3511-3524.

[27]

Mitra A., Elderfield H., Greaves M. J. Rare Earth Elements in Submarine Hydrothermal Fluids and Plumes from the Mid-Atlantic Ridge. Marine Chemistry, 1994, 46(3): 217-235.

[28]

Nozaki Y., Zhang J., Amakawa H. The Fractionation between Y and Ho in the Marine Environment. Earth and Planetary Science Letters, 1997, 148(1/2): 329-340.

[29]

Ou L. H., Yi H. S., Lin J. H., . The Characteristics of Carbonate Rock Layers and Its Metallogenesis Contribution in Lenghuikeng Stratabound Deposits, Jiangxi Province. China Mining Magazine, 2014, 23(9): 64-69.

[30]

Qi J. Z., Rui X. J., Chang C. S. Discussion on the Magma Evolution Model of Lengshuikeng Ore District, Jiangxi Province. Bulletin of Nanjing Institute of Geologogy and Mineral Resources, Chinese Academy of Geological Sciences, 1986, 7(1): 34-50.

[31]

Qiu J. T., Yu X. Q., Wu G. G., . Geochronology of Igneous Rocks and Nappe Structures in Lengshuikeng Deposit, Jiangxi Province, China. Acta Petrologica Sinica, 2013, 29: 812-826.

[32]

Rimmer S., Thompson J., Goodnight S., . Multiple Controls on the Preservation of Organic Matter in Devonian–Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215(1–2): 125-154.

[33]

Stalder M., Rozendaal A. Apatite Nodules as an Indicator of Depositional Environment and Ore Genesis for the Mesoproterozoic Broken Hill-Type Gamsberg Zn-Pb Deposit, Namaqua Province, South Africa. Mineralium Deposita, 2004, 39(2): 189-203.

[34]

Su H. M., Mao J. W., He X. R., . Timing of the Formation of the Tianhuashan Basin in Northern Wuyi as Constrained by Geochronology of Volcanic and Plutonic Rocks. Science China Earth Sciences, 2013, 56(6): 940-955.

[35]

Su H. M., Mao J. W., Santosh M., . Petrogenesis and Tectonic Significance of Late Jurassic–Early Cretaceous Volcanic-Intrusive Complex in the Tianhuashan Basin, South China. Ore Geology Reviews, 2014, 56: 566-583.

[36]

Sun J. D., Luo X. Q., Zhang X. H., . A Genetic Study of Fe-Mn Carbonate Breccias in the Lengshuikeng Ag-Pb-Zn Deposit, Jiangxi Province. Geology in China, 2014, 41(2): 484-496.

[37]

Terakado Y., Walker R. J. Nd, Sr and Pb Isotopic and REE Geochemical Study of some Miocene Submarine Hydrothermal Deposits (Kuroko Deposits) in Japan. Contributions to Mineralogy and Petrology, 2005, 149(4): 388-399.

[38]

Tribovillard N., Algeo T. J., Lyons T., . Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 2006, 232(1/2): 12-32.

[39]

Wang C. M., Zhang D., Wu G. G., . Zircon U-Pb Geochronology and Geochemistry of Rhyolitic Tuff, Granite Porphyry and Syenogranite in the Lengshuikeng Ore District, SE China: Implications for a Continental Arc to Intra-Arc Rift Setting. Journal of Earth System Science, 2013, 122(3): 809-830.

[40]

Xiao M. Z., Ming X. Q., Qin X. F., . Material Sources and Genetic Analysis of the Iron-Manganese Carbonatite Breccia Host Rock of the Stratiform Pb-Zn-Rich Orebodies in the Lengshuikeng Orefield. Geology in China, 2014, 41(2): 589-601.

[41]

Xiao M. Z., Qi G. M. The Metallogenic System and Metallogenic Model of the Lengshuikeng Pb-Zn-Ag Orefield, Jiangxi Province. Geology and Exploration, 2014, 50(2): 311-320.

[42]

Xin H., Jiang S. Y., Yang J. H., . Rare Earth Element Geochemistry of Phosphatic Rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area, South China. Journal of Earth Science, 2016, 27(2): 202-209.

[43]

Yan X., Jiang S. Y., Jiang Y. H. Geochronology, Geochemistry and Tectonic Significance of the Late Mesozoic Volcanic Sequences in the Northern Wuyi Mountain Volcanic Belt of South China. Gondwana Research, 2016.

[44]

Yang S. Y., Jiang S. Y., Jiang Y. H., . Geochemical, Zircon U-Pb Dating and Sr-Nd-Hf Isotopic Constraints on the Age and Petrogenesis of an Early Cretaceous Volcanic-Intrusive Complex at Xiangshan, Southeast China. Mineralogy and Petrology, 2010, 101(1/2): 21-48.

[45]

Yao H. Q., Zhou H. Y., Peng X. T., . Sr Isotopes and REEs Geochemistry of Anhydrites from L Vent Black Smoker Chimney, East Pacific Rise 9°N–10°N. Journal of Earth Science, 2015, 26(6): 920-928.

[46]

Zhao K. D., Jiang S. Y. Rare Earth Element and Yttrium Analyses of Sulfides from the Dachang Sn-Polymetallic Ore Field, Guangxi Province, China: Implication for Ore Genesis. Geochemical Journal, 2007, 41(2): 121-134.

[47]

Zhou X., Sun T., Shen W., . Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 2006, 29: 26-32.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/