Mineral chemistry of melanite from calcitic ijolite, the Oka carbonatite complex, Canada: Implications for multi-pulse magma mixing

Wei Chen, Weiqi Zhang, Antonio Simonetti, Shaoyong Jian

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 599-610.

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 599-610. DOI: 10.1007/s12583-016-0715-3
Article

Mineral chemistry of melanite from calcitic ijolite, the Oka carbonatite complex, Canada: Implications for multi-pulse magma mixing

Author information +
History +

Abstract

Ti-rich garnet is found within calcitic ijolite from the Oka carbonatite complex in Canada, which is characterized by 58%–73% andradite component (2.12 wt.%–4.18 wt.% TiO2) and classified as melanite. The garnet displays complex zoning and contains abundant high field strength elements (HFSEs) and rare earth elements (REEs). Three groups (I, II, III) have been identified based on their petrographic nature. Compared to groups II and III, Group I garnet cores contain higher TiO2, MgO, HFSE, and REE and lower SiO2 abundances. The distinct chemical and petrographic signatures of the investigated garnets cannot be attributed to simple closed system crystallization, but they are consistent with the multi-pulse magma mixing. Combined with previously reported U-Pb ages for apatite from the calcitic ijolite, at least three stages of magma evolution and subsequent mixing have been involved in the generation of calcitic ijolite at Oka. The early-formed melt that generated Group I garnet core was later mixed with at least two small-volume, more evolved melts. The intermediate stage melt formed the remaining garnet along with some pyroxene, calcite, nepheline, and apatite at 127±3.6 Ma. The youngest, most evolved melt generated the majority of pyroxene, calcite, nepheline, and apatite within the calcitic ijolite at 115±3.1 Ma.

Keywords

melanite garnet / calcitic ijolite / Oka / magma mixing

Cite this article

Download citation ▾
Wei Chen, Weiqi Zhang, Antonio Simonetti, Shaoyong Jian. Mineral chemistry of melanite from calcitic ijolite, the Oka carbonatite complex, Canada: Implications for multi-pulse magma mixing. Journal of Earth Science, 2016, 27(4): 599‒610 https://doi.org/10.1007/s12583-016-0715-3

References

Antao S. M., Mohib S., Zaman M., . Ti-Rich Andradites: Chemistry, Structure, Multi-Phases, Optical Anisotropy, and Oscillatory Zoning. The Canadian Mineralogist, 2015, 53(1): 133-158.
CrossRef Google scholar
Armbruster T., Birrer J., Libowitzky E., . Crystal Chemistry of Ti-Bearing Andradites. European Journal of Mineralogy, 1998, 10(5): 907-922.
CrossRef Google scholar
Barbieri M., Beccaluva L., Brotzu P., . Petrological and Geochemical Studies of Alkaline Rocks from Continental Brazil. 1. The Phonolite Suite from Piratini, RS.Geochimica Brasiliensis, 1987, 1: 109-138.
Chakhmouradian A. R., McCammon C. A. Schorlomite: A Discussion of the Crystal Chemistry, Formula, and Inter-Species Boundaries. Physics and Chemistry of Minerals, 2005, 32(4): 277-289.
CrossRef Google scholar
Chen W., Simonetti A. In-Situ Determination of Major and Trace Elements in Calcite and Apatite, and U-Pb Ages of Apatite from the Oka Carbonatite Complex: Insights into a Complex Crystallization History. Chemical Geology, 2013, 353: 151-172.
CrossRef Google scholar
Chen W., Simonetti A., Burns P. C. A Combined Geochemical and Geochronological Investigation of Niocalite from the Oka Carbonatite Complex, Canada. The Canadian Mineralogist, 2013, 51(5): 785-800.
CrossRef Google scholar
Chen W., Simonetti A. Evidence for the Multi-Stage Petrogenetic History of the Oka Carbonatite Complex (Québec, Canada) as Recorded by Perovskite and Apatite. Minerals, 2014, 4(2): 437-476.
CrossRef Google scholar
Davidson A., Gold D. P., Union C. G. Carbonatites, Diatremes and Ultra-Alkaline Rocks in the Oka Area, Quebec, 1986.
Dawson J. B., Smith J. V., Steele I. M. Petrology and Mineral Chemistry of Plutonic Igneous Xenoliths from the Carbonatite Volcano, Oldoinyo Lengai, Tanzania. Journal of Petrology, 1995, 36(3): 797-826.
CrossRef Google scholar
Dawson J. Peralkaline Nephelinite-Natrocarbonatite Relationships at Oldoinyo Lengai, Tanzania. Journal of Petrology, 1998, 39(11): 2077-2094.
CrossRef Google scholar
Deer W. A., Howie R. A., Zussman J. Rock-Forming Minerals: Orthosilicates, 1982.
Dingwell D. B., Brearley M. Mineral Chemistry of Igneous Melanite Garnets from Analcite-Bearing Volcanic Rocks, Alberta, Canada. Contributions to Mineralogy and Petrology, 1985, 90(1): 29-35.
CrossRef Google scholar
Dunworth E. A., Bell K. The Turiy Massif, Kola Peninsula, Russia: Mineral Chemistry of an Ultramafic-Alkaline-Carbonatite Intrusion. Mineralogical Magazine, 2003, 67(3): 423-451.
CrossRef Google scholar
Eby G. N. Abundance and Distribution of the Rare-Earth Elements and Yttrium in the Rocks and Minerals of the Oka Carbonatite Complex, Quebec. Geochimica et Cosmochimica Acta, 1975, 39(5): 597-620.
CrossRef Google scholar
Flohr M. J., Ross M. Alkaline Igneous Rocks of Magnet Cove, Arkansas: Metasomatized Ijolite Xenoliths from Diamond Jo Quarry. American Mineralogist, 1989, 74(1/2): 113-131.
Gold D. P. The Monteregian Hills: Ultra-Alkaline Rocks and the Oka Carbonatite Complex, 1972.
Gold D. P., Eby G. N., Bell K., . Carbonatites, Diatremes and Ultra-Alkaline Rocks in the Oka Area, Quebec, 1986.
Gwalani L. G., Rock N. M. S., Ramasamy R., . Complexly Zoned Ti-Rich Melanite-Schorlomite Garnets from Ambadungar Carbonatite-Alkalic Complex, Deccan Igneous Province, Gujarat State, Western India. Journal of Asian Earth Sciences, 2000, 18(2): 163-176.
CrossRef Google scholar
Holub F. V., Rapprich V., Erban V., . Petrology and Geochemistry of the Tertiary Alkaline Intrusive Rocks at Doupov, Doupovské Hory Volcanic Complex (NW Bohemian Massif). Journal of Geosciences, 2010, 55: 251-278.
Huggins F., Virgo D., Huckenholz H. Titanium-Containing Silicate Garnet: I, The Distribution of Al, Fe3+, and Ti4+ between Octahedral and Tetrahedral Sites. American Mineralogist, 1977, 62(5/6): 475-490.
Huggins F., Virgo D., Huckenholz H. Titanium-Containing Silicate Garnets: II, The Crystal Chemistry of Melanites and Schorlomites. American Mineralogist, 1977, 62(7/8): 646-665.
Ivanova T., Shtukenberg A., Punin Y. O., . On the Complex Zonality in Grandite Garnets and Implications. Mineralogical Magazine, 1998, 62(6): 857-868.
CrossRef Google scholar
Le Bas M. J. Carbonatite-Nephelinite Volcanism: An African Case History, 1977.
Locock A. J. An Excel Spreadsheet to Recast Analyses of Garnet into End-Member Components, and a Synopsis of the Crystal Chemistry of Natural Silicate Garnets. Computers & Geosciences, 2008, 34(12): 1769-1780.
CrossRef Google scholar
Locock A., Luth R. W., Cavell R. G., . Spectroscopy of the Cation Distribution in the Schorlomite Species of Garnet. American Mineralogist, 1995, 80(1/2): 27-38.
CrossRef Google scholar
Maitra M., David J. S., Bhaduri S. Melanite Garnet-Bearing Nepheline Syenite Minor Intrusion in Mawpyut Ultramafic-Mafic Complex, Jaintia Hills, Meghalaya. Journal of Earth System Science, 2011, 120(6): 1033-1041.
CrossRef Google scholar
Manning P., Harris D. Optical-Absorption and Electron-Microprobe Studies of Some High-Ti Andradites. The Canadian Mineralogist, 1970, 10(2): 260-271.
Marks M., Coulson I., Schilling J., . The Effect of Titanite and Other HFSE-Rich Mineral (Ti-Bearing Andradite, Zircon, Eudialyte) Fractionation on the Geochemical Evolution of Silicate Melts. Chemical Geology, 2008, 257(1/2): 153-172.
CrossRef Google scholar
McDonough W. F., Sun S. S. The Composition of the Earth. Chemical Geology, 1995, 120(3/4): 223-253.
CrossRef Google scholar
Melluso L., Morra V. D., Girolamo P. The Mt. Vulture Volcanic Complex (Italy): Evidence for Distinct Parental Magmas and for Residual Melts with Melilite. Mineralogy and Petrology, 1996, 56(3/4): 225-250.
CrossRef Google scholar
Melluso L., Srivastava R. K., Guarino V., . Mineral Compositions and Petrogenetic Evolution of the Ultramafic-Alkaline-Carbonatitic Complex of Sung Valley, Northeastern India. The Canadian Mineralogist, 2010, 48(1): 205-229.
CrossRef Google scholar
Niu H. C., Zhang H. X., Shan Q., . Discovery of Super-Silicic and Super-Titanic Garnets in Garnet-Pyroxenite in Zhaheba and Its Geological Significance. Science Bulletin, 2008, 53(14): 2186-2191.
CrossRef Google scholar
Russell J. K., Dipple G. M., Lang J. R., . Major-Element Discrimination of Titanian Andradite from Magmatic and Hydrothermal Environments: An Example from the Canadian Cordillera. European Journal of Mineralogy, 1999, 11(6): 919-936.
CrossRef Google scholar
Saha A., Ray J., Ganguly S., . Occurrence of Melanite Garnet in Syenite and Ijolite-Melteigite Rocks of Samchampi-Samteran Alkaline Complex, Mikir Hills, Northeastern India. Curr. Sci., 2011, 101: 95-100.
Simonetti A., Bell K. Isotopic Disequilibrium in Clinopyroxenes from Nephelinitic Lavas, Napak Volcano, Eastern Uganda. Geology, 1993, 21(3): 243-246.
CrossRef Google scholar
Simonetti A., Bell K. Nd, Pb and Sr Isotopic Data from the Mount Elgon Volcano, Eastern Uganda-Western Kenya: Implications for the Origin and Evolution of Nephelinite Lavas. Lithos, 1995, 36(2): 141-153.
CrossRef Google scholar
Simonetti A., Shore M., Bell K. Diopside Phenocrysts from Nephelinite Lavas, Napak Volcano, Eastern Uganda: Evidence for Magma Mixing. The Canadian Mineralogist, 1996, 34(2): 411-421.
Sparks S. R. J., Sigurdsson H., Wilson L. Magma Mixing: A Mechanism for Triggering Acid Explosive Eruptions. Nature, 1977, 267(5609): 315-318.
CrossRef Google scholar
Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
CrossRef Google scholar
Treiman A. H., Essene E. J. The Oka Carbonatite Complex, Quebec: Geology and Evidence for Silicate-Carbonate Liquid Immiscibility. American Mineralogist, 1985, 70(11/12): 1101-1113.
Van Achterbergh E., Ryan C., Jackson S., . Data Reduction Software for LA-ICP-MS. Laser-Ablation-ICPMS in the Earth Sciences—Principles and Applications. Miner Assoc Can (Short Course Series), 2001, 29: 239-243.
Vuorinen J. H., Hålenius U., Whitehouse M. J., . Compositional Variations (Major and Trace Elements) of Clinopyroxene and Ti-Andradite from Pyroxenite, Ijolite and Nepheline Syenite, Alnö Island, Sweden. Lithos, 2005, 81(1–4): 55-77.
CrossRef Google scholar
Zurevinski S. E., Mitchell R. H. Extreme Compositional Variation of Pyrochlore-Group Minerals at the Oka Carbonatite Complex, Quebec: Evidence of Magma Mixing?. The Canadian Mineralogist, 2004, 42(4): 1159-1168.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/