Mineral chemistry and crystallization conditions of the Late Cretaceous Mamba pluton from the eastern Gangdese, Southern Tibetan Plateau

Xiaowei Li , Xuanxue Mo , Mark Scheltens , Qi Guan

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 545 -570.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 545 -570. DOI: 10.1007/s12583-016-0713-5
Article

Mineral chemistry and crystallization conditions of the Late Cretaceous Mamba pluton from the eastern Gangdese, Southern Tibetan Plateau

Author information +
History +
PDF

Abstract

The Late Cretaceous Mamba granodiorite belongs to a part of the Mesozoic Gangdese continental magmatic belt. No quantitative mineralogical study has been made hitherto, and hence the depth at which it formed is poorly constrained. Here we present mineralogical data for the Mamba pluton, including host rocks and their mafic microgranular enclaves (MMEs), to provide insights into their overall crystallization conditions and information about magma mixing. All amphiboles in the Mamba pluton are calcic, with B(Ca+Na)>1.5, and Si=6.81–7.42 apfu for the host rocks and Si=6.77–7.35 apfu for the MMEs. The paramount cation substitutions in amphibole include edenite type and tschermakite type. Biotites both in the host rocks and the MMEs collectively have high MgO (13.19 wt.%–13.03 wt.%) contents, but define a narrow range of Al apfu (atoms per formula unit) variations (2.44–2.57). The oxygen fugacity estimates are based on the biotite compositions cluster around the NNO buffer. The calculated pressure ranges from 1.2 to 2.1 kbar according to the aluminum-in-hornblende barometer. The computed pressure varies from 0.9 to 1.3 kbar based on the aluminum-in-biotite barometer which corresponds to an average depth of ca. 3.9 km. Besides, the estimates of crystallization pressures vary from 0.8 to 1.4 kbar based on the amphibole barometer proposed by Ridolfi et al. (2010), which can be equivalent to the depths ranging from 3.1 to 5.2 km. The MMEs have plagioclase oscillatory zonings and quartz aggregates, probably indicating the presence of magma mixing. Besides, core-to-rim element variations (Rb, Sr, Ba, and P) for the K-feldspar megacrysts serve as robust evidence to support magma mixing and crystal fractionation. This indicates the significance of the magma mixing that contributes to the formation of K-feldspar megacryst zonings in the Mamba pluton.

Keywords

Mamba pluton / Gangdese terrane / MMEs / K-feldspar megacrysts / magma mixing / P-T conditions / oxygen fugacity / in-situ trace element

Cite this article

Download citation ▾
Xiaowei Li, Xuanxue Mo, Mark Scheltens, Qi Guan. Mineral chemistry and crystallization conditions of the Late Cretaceous Mamba pluton from the eastern Gangdese, Southern Tibetan Plateau. Journal of Earth Science, 2016, 27(4): 545-570 DOI:10.1007/s12583-016-0713-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allégre C. J., Courtillot V., Tapponnier P., . Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 1984, 307(5946): 17-22.

[2]

Anderson J. L., Smith D. R. The Effects of Temperature and fO2 on the Al-in-Hornblende Barometer. American Mineralogist, 1995, 80(5/6): 549-559.

[3]

Anderson J. L. Status of Thermobarometry in Granitic Batholiths. Geological Society of America Special Papers, 1996, 315: 125-138.

[4]

Ayati F., Yavuz F., Asadi H. H., . Petrology and Geochemistry of Calc-Alkaline Volcanic and Subvolcanic Rocks, Dalli Porphyry Copper-Gold Deposit, Markazi Province, Iran. International Geology Review, 2013, 55(2): 158-184.

[5]

Barbarin B., Didier J. Genesis and Evolution of Mafic Microgranular Enclaves through Various Types of Interaction between Coexisting Felsic and Mafic Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1/2): 145-153.

[6]

Barker S. J., Wilson C. J. N., Baker J. A., . Geochemistry and Petrogenesis of Silicic Magmas in the Intra-Oceanic Kermadec Arc. Journal of Petrology, 2012, 54(2): 351-391.

[7]

Benisek A., Kroll H., Cemic L. New Developments in Two-Feldspar Thermometry. American Mineralogist, 2004, 89(10): 1496-1504.

[8]

Blundy J. D., Holland T. J. B. Calcic Amphibole Equilibria and a New Amphibole-Plagioclase Geothermometer. Contributions to Mineralogy and Petrology, 1990, 104(2): 208-224.

[9]

Bonin B. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources. A Review. Lithos, 2004, 78(1/2): 1-24.

[10]

Castro A. Plagioclase Morphologies in Assimilation Experiments. Implications for Disequilibrium Melting in the Generation of Granodiorite Rocks. Mineralogy and Petrology, 2001, 71(1/2): 31-49.

[11]

Chu M. F., Chung S. L., Song B., . Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 2006, 34 9 745

[12]

Cox R. A., Dempster T. J., Bell B. R., . Crystallization of the Shap Granite: Evidence from Zoned K-Feldspar Megacrysts. Journal of the Geological Society, 1996, 153(4): 625-635.

[13]

Czamanske G. K., Wones D. R. Oxidation during Magmatic Differentiation, Finnmarka Complex, Oslo Area, Norway: Part 2, the Mafic Silicates1. Journal of Petrology, 1973, 14(3): 349-380.

[14]

Czamanske G. K., Wones D. R., Eichelberger J. Mineralogy and Petrology of the Intrusive Complex of the Pliny Range, New Hampshire. American Journal of Science, 1977, 277(9): 1073-1123.

[15]

Deer W. A., Howie R. A., Zussman J. An Introduction to the Rock-Forming Minerals (Second Edition), 1992, 528.

[16]

Dewey J. F., Shackleton R. M., Chengfa C., . The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1988, 327(1594): 379-413.

[17]

Didier J., Renouf J. T. Granites and Their Enclaves: The Bearing of Enclaves on the Origin of Granites, 1973, 1-393.

[18]

Didier J. The Problem of Enclaves in Granitic Rocks: A Review of Recent Ideas on Their Origin, 1984, Beijing: Science Press, 137-144.

[19]

Didier J. Contribution of Enclave Studies to the Understanding of Origin and Evolution of Granitic Magmas. Geologische Rundschau, 1987, 76(1): 41-50.

[20]

Didier J., Barbarin B. Enclaves and Granite Petrology, 1991, 1-626.

[21]

Dostal J., Chatterjee A. K. Lead Isotope and Trace Element Composition of K-Feldspars from Peraluminous Granitoids of the Late Devonian South Mountain Batholith (Nova Scotia, Canada): Implications for Petrogenesis and Tectonic Reconstruction. Contributions to Mineralogy and Petrology, 2010, 159(4): 563-578.

[22]

Ebadi A., Johannes W. Beginning of Melting and Composition of First Melts in the System Qz-Ab-Or-H2O-CO2. Contributions to Mineralogy and Petrology, 1991, 106(3): 286-295.

[23]

Ernst R. E., Buchan K. L. The Use of Mafic Dike Swarms in Identifying and Locating Mantle Plumes. Special Paper of the Geological Society of America, 2001, 352: 247-265.

[24]

Ersoy Y., Helvaci C. FC-AFC-FCA and Mixing Modeler: A Microsoft® Excel© Spreadsheet Program for Modeling Geochemical Differentiation of Magma by Crystal Fractionation, Crustal Assimilation and Mixing. Computers & Geosciences, 2010, 36(3): 383-390.

[25]

Ewart A., Griffin W. L. Application of Proton-Microprobe Data to Trace-Element Partitioning in Volcanic Rocks. Chemical Geology, 1994, 117(1–4): 251-284.

[26]

Foster M. D. Interpretation of the Composition of Trioctahedral Micas. United States Geological Survey, Professional Paper, 1960, 354-B: 1-146.

[27]

Gagnevin D., Daly J. S., Poli G., . Microchemical and Sr Isotopic Investigation of Zoned K-Feldspar Megacrysts: Insights into the Petrogenesis of a Granitic System and Disequilibrium Crystal Growth. Journal of Petrology, 2005, 46(8): 1689-1724.

[28]

Gao Y. Y., Santosh M., Wei R. H., . Origin of High Sr/Y Magmas from the Northern Taihang Mountains: Implications for Mesozoic Porphyry Copper Mineralization in the North China Craton. Journal of Asian Earth Sciences, 2013, 78: 143-159.

[29]

Gerdes A., Worner G., Finger F. Hybrids, Magma Mixing and Enriched Mantle Melts in Post-Collisional Variscan Granitoids: The Rastenberg Pluton, Austria. Geological Society, London, Special Publications, 2000, 179(1): 415-431.

[30]

Giret A., Bonin B., Leger J.-M. Amphibole Compositional Trends in Oversaturated and Undersaturated Alkaline Plutonic Ring-Composition. The Canadian Mineralogist, 1980, 18(4): 481-495.

[31]

Guan Q., Zhu D. C., Zhao Z. D., . Late Cretaceous Adakites in the Eastern Segment of the Gangdese Belt, Southern Tibet: Products of Neo-Tethyan Ridge Subduction. Acta Petrologica Sinica, 2010, 26(7): 2165-2179.

[32]

Halliday A. N., Davidson J. P., Hildreth W., . Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 1991, 92(1–3): 107-114.

[33]

Henry D. J., Guidotti C. V., Thomson J. A. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 2005, 90(2/3): 316-328.

[34]

Hibbard M. Didier J., Barbarin B. Textural Anatomy of Twelve Magma-Mixed Granitoid Systems. Enclaves and Granite Petrology, 1991, 431-444.

[35]

Holden P., Halliday A. N., Stephens W. E. Neodymium and Strontium Isotope Content of Microdiorite Enclaves Points to Mantle Input to Granitoid Production. Nature, 1987, 330(6143): 53-56.

[36]

Holland T. J. B., Blundy J. D. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 1994, 116(4): 433-447.

[37]

Hollister L. S., Grissom G. C., Peters E. K., . Confirmation of the Empirical Correlation of Al in Hornblende with Pressure of Solidification of Calc-Alkaline Plutons. American Mineralogist, 1987, 72: 231-239.

[38]

Honarmand M., Ahmadian J., Nabatian G., . Reconstructing Physicochemical Conditions by Application of Mineral Chemistry: A Case Study from the Natanz Pluton, Central Iran. Neues Jahrbuch für Mineralogie-Abhandlungen, 2012, 189(2): 138-153.

[39]

Huang F., He Y. S. Partial Melting of the Dry Mafic Continental Crust: Implications for Petrogenesis of C-Type Adakites. Chinese Science Bulletin, 2010, 55(22): 2428-2439.

[40]

Huang H. Q., Li X. H., Li Z. X., . Intraplate Crustal Remelting as the Genesis of Jurassic High-K Granites in the Coastal Region of the Guangdong Province, SE China. Journal of Asian Earth Sciences, 2013, 74: 280-302.

[41]

Icenhower J., London D. Experimental Partitioning of Rb, Cs, Sr, and Ba between Alkali Feldspar and Peraluminous Melt. American Mineralogist, 1996, 81(5/6): 719-734.

[42]

Ji W. Q., Wu F. Y., Liu C. Z., . Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet. Science in China Series D: Earth Sciences, 2009, 52(9): 1240-1261.

[43]

Jiang C., An S. On Chemical Characteristics of Calcic Amphiboles from Igenous Rocks and Their Petrogenesis Significance. Journal of Mineralogy and Petrology, 1984, 5(3): 1-8.

[44]

Karsli O., Caran S., Dokuz A., . A-Type Granitoids from the Eastern Pontides, NE Turkey: Records for Generation of Hybrid A-Type Rocks in a Subduction-Related Environment. Tectonophysics, 2012, 530/531: 208-224.

[45]

Kay S. M., Mpodozis C. Central Andean Ore Deposits Linked to Evolving Shallow Subduction Systems and Thickening Crust. GSA Today, 2001, 11 3 4

[46]

Kocak K., Zedef V., Kansun G. Magma Mixing/Mingling in the Eocene Horoz (Nigde) Granitoids, Central Southern Turkey: Evidence from Mafic Microgranular Enclaves. Mineralogy and Petrology, 2011, 103(1–4): 149-167.

[47]

Kumar S., Pathak M. Mineralogy and Geochemistry of Biotites from Proterozoic Granitoids of Western Arunachal Himalaya: Evidence of Bimodal Granitogeny and Tectonic Affinity. Journal of the Geological Society of India, 2010, 75(5): 715-730.

[48]

Laeger K., Halama R., Hansteen T., . Crystallization Conditions and Petrogenesis of the Lava Dome from the ~900 Years BP Eruption of Cerro Machín Volcano, 2013, 48: 193-208.

[49]

Leake B. E., Woolley A. R., Birch W. D. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 1997, 61(405): 295-321.

[50]

Lee M. R. Exsolution and Alteration Microtextures in Alkali Feldspar Phenocrysts from the Shap Granite. Mineralogical Magazine, 1995, 59(394): 63-78.

[51]

Li J. X., Qin K. Z., Li G. M., . Post-Collisional Ore-Bearing Adakitic Porphyries from Gangdese Porphyry Copper Belt, Southern Tibet: Melting of Thickened Juvenile Arc Lower Crust. Lithos, 2011, 126(3/4): 265-277.

[52]

Li X. C., Fan H. R., Santosh M., . An Evolving Magma Chamber within Extending Lithosphere: An Integrated Geochemical, Isotopic and Zircon U-Pb Geochronological Study of the Gushan Granite, Eastern North China Craton. Journal of Asian Earth Sciences, 2012, 50: 27-43.

[53]

Li X. W., Huang X. F., Huang D. F. Review on Application of Geobarometry for Granitic Rocks. Geological Journal of China Universities, 2011, 17(3): 415-422.

[54]

Li X. W., Mo X. X., Zhao Z. D., . The Origin of K-Feldspar Megacryst in Granitoids: A Critical Review. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(2): 210-215.

[55]

Li X. W., Mo X. X., Yu X. H., . Petrology and Geochemistry of the Early Mesozoic Pyroxene Andesites in the Maixiu Area, West Qinling, China: Products of Subduction or Syn-Collision. Lithos, 2013, 172/173: 158-174.

[56]

Lin W. W., Peng L. J. The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data. Journal of Changchun University of Earth Sciences, 1994, 24(2): 155-162.

[57]

Ma H. Comparison of K-Feldspar Ordering by X-Ray Powder Diffraction and Infrared Spectroscopy and Its Relations to Al Occupancy and Equilibrium Temperature. Acta Mineralogica Sinica, 1988, 8(2): 143-150.

[58]

Machev P., Klain L., Hecht L. Mineralogy and Geochemistry of Biotites from the Belogradchik Pluton—Some Petrological Implications for Granitoid Magmatism in Northwest Bulgaria, 2004, 48-50.

[59]

Meng F. Y., Zhao Z. D., Zhu D. C., . Petrogenesis of Late Cretaceous Adakite-Like Rocks in Mamba from the Eastern Gangdese, Tibet. Acta Petrologica Sinica, 2010, 26(7): 2180-2192.

[60]

Meng F. Y., Zhao Z. D., Zhu D. C., . Cretaceous Magmatism in Mamba Area, Central Lhasa Subterrane: Products of Back-Arc Extension of Neo-Tethyan Ocean. Gondwana Research, 2014, 26(2): 505-520.

[61]

Mo X. X., Luo Z. H., Xiao Q. H., . Xiao Q. H., Deng J. F., Ma D. Q., . Evidence of Magma Mixing in Granitoids Plutons and the Way of Investigation. The Ways of Investigation on Granitoids, 2002, Beijing: Geological Publishing House, 53-70.

[62]

Moyen J. F. High Sr/Y and La/Yb Ratios: The Meaning of the “Adakitic Signature”. Lithos, 2009, 112(3/4): 556-574.

[63]

Murphy J. B., Blais S. A., Tubrett M., . Microchemistry of Amphiboles near the Roof of a Mafic Magma Chamber: Insights into High Level Melt Evolution. Lithos, 2012, 148: 162-175.

[64]

Müntener O., Kelemen P. B., Grove T. L. The Role of H2O during Crystallization of Primitive Arc Magmas under Uppermost Mantle Conditions and Genesis of Igneous Pyroxenites: An Experimental Study. Contributions to Mineralogy and Petrology, 2001, 141(6): 643-658.

[65]

Pan F. B., Zhang H. F., Xu W. C., . U-Pb Zircon Chronology, Geochemical and Sr-Nd Isotopic Composition of Mesozoic–Cenozoic Granitoids in the SE Lhasa Terrane: Petrogenesis and Tectonic Implications. Lithos, 2014, 192–195: 142-157.

[66]

Perugini D., Poli G., Christofides G., . Magma Mixing in the Sithonia Plutonic Complex, Greece: Evidence from Mafic Microgranular Enclaves. Mineralogy and Petrology, 2003, 78(3/4): 173-200.

[67]

Philpotts J. A., Schnetzler C. C. Phenocryst-Matrix Partition Coefficients for K, Rb, Sr and Ba, with Applications to Anorthosite and Basalt Genesis. Geochimica et Cosmochimica Acta, 1970, 34(3): 307-322.

[68]

Poli G. Geochemistry of Tuscan Archipelago Granitoids, Central Italy: The Role of Hybridization Processes in Their Genesis. The Journal of Geology, 1992, 100(1): 41-56.

[69]

Poli G., Tommasini S., Halliday A. N. Trace Element and Isotopic Exchange during Acid-Basic Magma Interaction Processes. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1996, 87(1/2): 225-232.

[70]

Pribavkin S. V., Avdonina I. S., Zamyatin D. A. Mineralogy, Conditions of Crystallization and Melt Generation of Epidote-Bearing Porphyries from the Middle Urals, Russian Federation. Mineralogy and Petrology, 2013, 107(1): 125-147.

[71]

Qin F., Xu X., Luo Z. Mixing and Mingling in Petrogenesis of the Fangshan Intrusion, Beijing. Acta Petrologica Sinica, 2006, 22(12): 2957-2970.

[72]

Ridolfi F., Puerini M., Renzulli A., . The Magmatic Feeding System of El Reventador Volcano (Sub-Andean Zone, Ecuador) Constrained by Texture, Mineralogy and Thermobarometry of the 2002 Erupted Products. Journal of Volcanology and Geothermal Research, 2008, 176(1): 94-106.

[73]

Ridolfi F., Renzulli A., Puerini M. Stability and Chemical Equilibrium of Amphibole in Calc-Alkaline Magmas: An Overview, New Thermobarometric Formulations and Application to Subduction-Related Volcanoes. Contributions to Mineralogy and Petrology, 2010, 160(1): 45-66.

[74]

Rowins S. M., Lalonde A. E., Cameron E. M. Magmatic Oxidation in the Syenitic Murdock Creek Intrusion, Kirkland Lake, Ontario: Evidence from the Ferromagnesian Silicates. The Journal of Geology, 1991, 99(3): 395-414.

[75]

Sengör A. M. C., Altiner D., Cin A., . Origin and Assembly of the Tethyside Orogenic Collage at the Expense of Gondwana Land. Geological Society, London, Special Publications, 1988, 37(1): 119-181.

[76]

Sepahi A. A., Maanijou M., Salami S., . Mineral Chemistry and Geothermobarometry of Moshirabad Pluton, Qorveh, Kurdistan, Western Iran. Island Arc, 2012, 21(3): 170-187.

[77]

Shane P., Smith V. C. Using Amphibole Crystals to Reconstruct Magma Storage Temperatures and Pressures for the Post-Caldera Collapse Volcanism at Okataina Volcano. Lithos, 2013, 156–159: 159-170.

[78]

Sherafat S., Yavuz F., Noorbehesht I., . Mineral Chemistry of Plio-Quaternary Subvolcanic Rocks, Southwest Yazd Province, Iran. International Geology Review, 2012, 54(13): 1497-1531.

[79]

Speer J. A. Evolution of Magmatic AFM Mineral Assemblages in Granitoid Rocks: The Hornblende+Melt= Biotite Reaction in the Liberty Hill Pluton, South Carolina. American Mineralogist, 1987, 72: 9-10.

[80]

Stein E., Dietl C. Hornblende Thermobarometry of Granitoids from the Central Odenwald (Germany) and their Implications for the Geotectonic Development of the Odenwald. Mineralogy and Petrology, 2001, 72(1–3): 185-207.

[81]

Stormer J. C. A Practical Two-Feldspar Thermometer. American Mineralogist, 1975, 60: 667-674.

[82]

Stouraiti C., Mitropoulos P. Variation in Amphibole Composition from the Serifos Intrusive Complex (Greece), under Magmatic and Hydrothermal Alteration Conditions: An Application of Hornblende Geobarometry. Bulletin of the Geological Society of Greece, 1999, 33: 39-50.

[83]

Tang G. J., Wang Q., Wyman D. A., . Late Carboniferous High εNd(t)-εHf(t) Granitoids, Enclaves and Dikes in Western Junggar, NW China: Ridge-Subduction-Related Magmatism and Crustal Growth. Lithos, 2012, 140/141: 86-102.

[84]

Turnbull R., Weaver S., Tulloch A., . Field and Geochemical Constraints on Mafic-Felsic Interactions, and Processes in High-Level Arc Magma Chambers: An Example from the Halfmoon Pluton, New Zealand. Journal of Petrology, 2010, 51(7): 1477-1505.

[85]

Uchida E., Endo S., Makino M. Relationship between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits. Resource Geology, 2007, 57(1): 47-56.

[86]

Ustunisik G., Kilinc A., Nielsen R. L. New Insights into the Processes Controlling Compositional Zoning in Plagioclase. Lithos, 2014, 200/201: 80-93.

[87]

Van Achterbergh E., Ryan C., Jackson S., . Data Reduction Software for LA-ICPMS. Laser-Ablation-ICPMS in the Earth Sciences. Mineralogical Association of Canada Short Course Series, 2001, 29: 239-243.

[88]

Vernon R. H. Microgranitoid Enclaves in Granites—Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 1984, 309(5967): 438-439.

[89]

Wang C. S., Zhao X. X., Liu Z. F., . Constraints on the Early Uplift History of the Tibetan Plateau. PNAS, 2008, 105(13): 4987-4992.

[90]

White J. C., Holt G. S., Parker D. F., . Trace-Element Partitioning between Alkali Feldspar and Peralkalic Quartz Trachyte to Rhyolite Magma. Part I: Systematics of Trace-Element Partitioning. American Mineralogist, 2003, 88(2/3): 316-329.

[91]

Whitney J. A., Stormer J. C. The Distribution of NaAlSi3O8 between Coexisting Microcline and Plagioclase and Its Effect on Geothermometric Calculations. American Mineralogist, 1977, 62: 687-691.

[92]

Wones D., Eugster H. Stability of Biotite: Experiment, Theory, and Application. American Mineralogist, 1965, 50(9): 1228-1272.

[93]

Wu F. Y., Jahn B. M., Wilde S. A., . Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 2003, 66(3/4): 241-273.

[94]

Wyllie P. J., Cox K. G., Biggar G. M. The Habit of Apatite in Synthetic Systems and Igneous Rocks. Journal of Petrology, 1962, 3(2): 238-243.

[95]

Xiong F. H., Ma C. Q., Zhang J. Y., . The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 2012, 104(3/4): 211-224.

[96]

Yang J. H., Wu F. Y., Chung S. L., . A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 2006, 89(1/2): 89-106.

[97]

Yin A., Harrison T. M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.

[98]

Zhang H. F., Xu W. C., Guo J. Q., . Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdise Terrane, Tibet: Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab. Acta Petrologica Sinica, 2007, 23(6): 1347-1353.

[99]

Zhang S. H., Zhao Y., Song B. Hornblende Thermobarometry of the Carboniferous Granitoids from the Inner Mongolia Paleo-Uplift: Implications for the Tectonic Evolution of the Northern Margin of North China Block. Mineralogy and Petrology, 2006, 87(1/2): 123-141.

[100]

Zhang Z. M., Zhao G. C., Santosh M., . Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction. Gondwana Research, 2010, 17(4): 615-631.

[101]

Zhang Z. M., Dong X., Liu F., . Tectonic Evolution of the Amdo Terrane, Central Tibet: Petrochemistry and Zircon U-Pb Geochronology. The Journal of Geology, 2012, 120(4): 431-451.

[102]

Zhou Z. The Origin of Intrusive Mass in Fengshandong, Hubei Province. Acta Petrologica Sinica, 1986, 2(1): 59-70.

[103]

Zhu D. C., Zhao Z. D., Niu Y., . Lhasa Terrane in Southern Tibet Came from Australia. Geology, 2011, 39(8): 727-730.

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/