Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision

Pengpeng Huangfu , Yuejun Wang , Zhonghai Li , Weiming Fan , Yan Zhang

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (5) : 727 -739.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (5) : 727 -739. DOI: 10.1007/s12583-016-0701-9
Article

Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision

Author information +
History +
PDF

Abstract

2D thermo-mechanical models are constructed to investigate the effects of oceanic and continental crustal eclogitization on plate dynamics at three successive stages of oceanic subduction, slab breakoff, and continental subduction. Crustal eclogitization directly increases the average slab density and accordingly the slab pull force, which makes the slab subduct deeply and steeply. Numerical results demonstrate that the duration time from initial continental collision to slab breakoff largely depends on the slab pull force. Specifically, eclogitization of subducted crust can greatly decrease the duration time, but increase the breakoff depth. The detachment of oceanic slab from the pro-continental lithosphere is accompanied with obvious exhumation of the subducted continental crust and a sharp uplift of the collision zone in response to the disappearance of downward drag force and the induced asthenospheric upwelling, especially under the condition of no or incomplete crustal eclogitization. During continental subduction, the slab dip angle is strongly correlated with eclogitization of subducted continental lower crust, which regulates the slab buoyancy nature. Our model results can provide several important implications for the Himalayan-Tibetan collision zone. For example, it is possible that the lateral variations in the degree of eclogitization of the subducted Indian crust might to some extent contribute to the lateral variations of subduction angle along the Himalayan orogenic belt. Moreover, the accumulation of highly radiogenic sediments and upper continental crustal materials at the active margin in combination with the strong shear heating due to continuous continental subduction together cause rising of isotherms in the accretionary wedge, which facilitate the development of crustal partial melting and metamorphism.

Keywords

numerical modeling / crustal eclogitization / oceanic subduction / slab breakoff / continental subduction / Himalayan-Tibetan collision zone

Cite this article

Download citation ▾
Pengpeng Huangfu, Yuejun Wang, Zhonghai Li, Weiming Fan, Yan Zhang. Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision. Journal of Earth Science, 2016, 27(5): 727-739 DOI:10.1007/s12583-016-0701-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allegre C. J., Courtillot V., Tapponnier P., . Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 1984, 307(5946): 17-22.

[2]

Bittner D., Schmeling H. Numerical Modeling of Melting Processes and Induced Diapirism in the Lower Crust. Geophysical Journal International, 1995, 123(1): 59-70.

[3]

Chemenda A. I., Burg J. P., Mattauer M. Evolutionary Model of the Himalaya-Tibet System: Geopoem Based on New Modelling, Geological and Geophysical Data. Earth and Planetary Science Letters, 2000, 174(3–4): 397-409.

[4]

Chen L., Gerya T. V., Zhang Z. J., . Formation Mechanism of Steep Convergent Intracontinental Margins: Insights from Numerical Modeling. Geophysical Research Letters, 2013, 40(10): 2000-2005.

[5]

Chen Y., Li W., Yuan X., . Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 2015, 413: 13-24.

[6]

Chung S. L., Liu D. Y., Ji J. Q., . Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 2003, 31(11): 1021-1024.

[7]

Chung S. L., Chu M. F., Ji J., . The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 2009, 477(1): 36-48.

[8]

Chung S. L., Chu M. F., Zhang Y., . Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-collisional Magmatism. Earth Science Reviews, 2005, 68(3): 173-196.

[9]

Clauser C., Huenges E. Thermal Conductivity of Rocks and Minerals. AGU Reference Shelf, 1995, 3: 105-126.

[10]

DeCelles P. G., Robinson D. M., Zandt G. Implications of Shortening in the Himalayan Fold-Thrust Belt for Uplift of the Tibetan Plateau. Tectonics, 2002, 21 6 TC1062

[11]

Ding L., Kapp P., Zhong D. L., . Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 2003, 44(10): 1833-1865.

[12]

Duesterhoeft E., Quinteros J., Oberhansli R., . Relative Impact of Mantle Densification and Eclogitization of Slabs on Subduction Dynamics: A Numerical Thermodynamic/Thermokinematic Investigation of Metamorphic Density Evolution. Tectonophysics, 2014, 637: 20-29.

[13]

England P., Houseman G. Finite Strain Calculations of Continental Deformation. 2. Comparison with the India-Asia Collision Zone. Journal of Geophysical Research: Solid Earth and Planets, 1986, 91(B3): 3664-3676.

[14]

Forsyth D., Uyeda S. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 1975, 43(1): 163-200.

[15]

Gerya T. V. Introduction to Numerical Geodynamic Modelling, 2010 New York: Cambridge University Press, 345.

[16]

Gerya T. V., Yuen D. A. Characteristics-Based Marker-in-Cell Method with Conservative Finite-differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318.

[17]

Giunchi C., Ricard Y. High-Pressure/ Low-Temperature Metamorphism and the Dynamics of an Accretionary Wedge. Geophysical Journal International, 1999, 136(3): 620-628.

[18]

Haines S. S., Klemperer S. L., Brown L., . INDEPTH III Seismic Data: From Surface Observations to Deep Crustal Processes in Tibet. Tectonics, 2003, 22 1 1001

[19]

Hodges K. V. Tectonics of the Himalaya and Southern Tibet from Two Perspectives. Geological Society of America Bulletin, 2000, 112(3): 324-350.

[20]

Houseman G. A., Mckenzie D. P., Molnar P. Convective Instability of a Thickened Boundary-Layer and Its Relevance for the Thermal Evolution of Continental Convergent Belts. Journal of Geophysical Research, 1981, 86: 6115-6132.

[21]

Jischke M. C. Dynamics of Descending Lithospheric Plates and Slip Zones. Journal of Geophysical Research, 1975, 80(35): 4809-4813.

[22]

Klootwijk C. T., Conaghan P. J., Powell C. M. The Himalayan Arc-Large-Scale Continental Subduction, Oroclinal Bending and Back-Arc Spreading. Earth and Planetary Science Letters, 1985, 75: 167-183.

[23]

Leech M. L. Arrested Orogenic Development: Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 2001, 185(1–2): 149-159.

[24]

Li C., van der Hilst R. D., Meltzer A. S., . Subduction of the Indian Lithosphere Beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 2008, 274: 157-168.

[25]

Li Z. H., Xu Z. Q., Gerya T. V. Flat Versus Steep Subduction: Contrasting Modes for the Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Collision Zones. Earth and Planetary Science Letters, 2011, 301: 65-77.

[26]

Li Z. H. A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation. Science China: Earth Sciences, 2014, 57: 47-69.

[27]

Li Z. H., Xu Z. Q., Gerya T. V., . Collision of Continental Corner from 3-D Numerical Modeling. Earth and Planetary Science Letters, 2013, 380: 98-111.

[28]

Liang X., Sandvol E., Chen Y. J., . A Complex Tibetan Upper Mantle: A Fragmented Indian Slab and no South-Verging Subduction of Eurasian Lithosphere. Earth and Planetary Science Letters, 2012, 333: 101-111.

[29]

Lithgow-Bertelloni C., Richards M. A. Cenozoic Plate Driving Forces. Geophysical Research Letters, 1995, 22(11): 1317-1320.

[30]

Lustrino M. How the Delamination and Detachment of Lower Crust can Influence Basaltic Magmatism. Earth-Science Reviews, 2005, 72: 21-38.

[31]

Manea V., Manea M., Kostoglodov V., . Intraslab Seismicity and Thermal Stress in the Subducted Cocos Plate Beneath Central Mexico. Tectonophysics, 2006, 420: 389-408.

[32]

Molnar P., England P., Martinod J. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 1993, 31(4): 357-396.

[33]

Owens T. J., Zandt G. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 1997, 387(6628): 37-43.

[34]

Paul J., Burgmann R., Gaur V. K., . The Motion and Active Deformation of India. Geophysical Research Letters, 2001, 28: 647-650.

[35]

Platt J. P., England P. C. Convective Removal of Lithosphere beneath Mountain Belts—Thermal and Mechanical Consequences. American Journal of Science, 1994, 294(3): 307-336.

[36]

Powell C. M. Continental Underplating Model for the Rise of the Tibetan Plateau. Earth and Planetary Science Letters, 1986, 81: 79-94.

[37]

Ranalli G. Rheology of the Earth, 1995 Netherlands: Springer, 414.

[38]

Riedell M. R., Karato S. Microstructural Development during Nucleation and Growth. Geophysical Journal International, 1996, 125(2): 397-414.

[39]

Roger F., Tapponnier P., Arnaud N., . An Eocene Magmatic Belt across Central Tibet: Mantle Subduction Triggered by the Indian Collision?. Terra Nova, 2000, 12: 102-108.

[40]

Schellart W. P. Quantifying the Net Slab Pull Force as a Driving Mechanism for Plate Tectonics. Geophysical Research Letters, 2004, 31 7 L07611

[41]

Searle M. P., Elliott J., Phillips R., . Crustal–Lithospheric Structure and Continental Extrusion of Tibet. Journal of the Geological Society, 2011, 168: 633-672.

[42]

Stevenson D. J., Turner J. S. Angle of Subduction. Nature, 1977, 270: 334-336.

[43]

Tapponnier P., Peltzer G., Ledain A. Y., . Propagating Extrusion Tectonics in Asia—New Insights from Simple Experiments with Plasticine. Geology, 1982, 10(12): 611-616.

[44]

Tapponnier P., Xu Z. Q., Roger F., . Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294(5547): 1671-1677.

[45]

Turcotte D. L., Schubert G. Geodynamics, 2002 Cambridge: Cambridge University Press, 636

[46]

van Hinsbergen D. J. J., Steinberger B., Doubrovine P. V., . Acceleration and Deceleration of India-Asia Convergence since the Cretaceous: Roles of Mantle Plumes and Continental Collision. Journal of Geophysical Research: Solid Earth, 2011, 116 B06101.

[47]

van Hunen J. v. d., Berg A. P., Vlaar N. J. Latent Heat Effects of the Major Mantle Phase Transitions on Low-Angle Subduction. Earth and Planetary Science Letters, 2001, 190: 125-135.

[48]

van Hunen J., van den Berg A. P., Vlaar N. J. Various Mechanisms to Induce Present-day Shallow Flat Subduction and Implications for the Younger Earth: A Numerical Parameter Study. Physics of the Earth and Planetary Interiors, 2004, 146: 179-194.

[49]

Vigny C., Ricard Y., Froidevaux C. The Driving Mechanism of Plate Tectonics. Tectonophysics, 1991, 187(4): 345-360.

[50]

Wang R., Richards J. P., Zhou L. M., . The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth Science Reviews, 2015, 150: 68-94.

[51]

Wang Y., Li S., Ma L., . Geochronological and Geochemical Constraints on the Petrogenesis of Early Eocene Metagabbroic Rocks in Nabang (SW Yunnan) and Its Implications on the Neotethyan Slab Subduction. Gondwana Research, 2015, 27(4): 1474-1486.

[52]

Wang Y., Zhang L., Cawood P. A., . Eocene Supra-Subduction Zone Mafic Magmatism in the Sibumasu Block of SW Yunnan: Implications for Neotethyan Subduction and India-Asia Collision. Lithos, 2014, 206: 384-399.

[53]

Willett S. D., Beaumont C. Subduction of Asian Lithospheric Mantle beneath Tibet Inferred from Models of Continental Collision. Nature, 1994, 369(6482): 642-645.

[54]

Yao T. D., Masson-Delmotte V., Gao J., . A Review of Climatic Controls on d18O in Precipitation over the Tibetan Plateau: Observations and Simulations. Reviews of Geophysics, 2013, 51(4): 525-548.

[55]

Yang J. Z., Liu X. C., Wu Y. B., . Zircon Record of Ocean-Continent Subduction Transition Process of Dulan UHPM Belt, North Qaidam. Journal of Earth Science, 2015, 26(5): 617-625.

[56]

Yin A., Harrison T. M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.

[57]

Yin A. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth Science Reviews, 2006, 76: 1-131.

[58]

Zhang Z. M., Dong X., Santosh M., . Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 2014, 25: 170-189.

[59]

Zhao J., Yuan X., Liu H., . The Boundary between the Indian and Asian Tectonic Plates below Tibet. Proceedings of the National Academy of Sciences, 2010, 107: 11229-11233.

[60]

Zhao W. L., Morgan W. J. Uplift of Tibetan Plateau. Tectonics, 1985, 4(4): 359-369.

[61]

Zhao W., Kumar P., Mechie J., . Tibetan Plate Overriding the Asian Plate in Central and Northern Tibet. Nature Geoscience, 2011, 4: 870-873.

[62]

Zheng Y. F., Zhao Z. F., Chen Y. X. Continental Subduction Channel Processes: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 2013, 58(35): 4371-4377.

[63]

Zhu D. C., Zhao Z. D., Niu Y., . The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 2013, 23: 1429-1454.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/