Preface: Atmospheric and oceanic oxygenation and evolution of early life on Earth: New contributions from China

Chao Li, Maoyan Zhu, Xuelei Chu

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 167-169.

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 167-169. DOI: 10.1007/s12583-016-0697-1
Article

Preface: Atmospheric and oceanic oxygenation and evolution of early life on Earth: New contributions from China

Author information +
History +

Keywords

Cambrian / Black Shale / Phosphorite / Hutuo Group / Great Oxidation Event

Cite this article

Download citation ▾
Chao Li, Maoyan Zhu, Xuelei Chu. Preface: Atmospheric and oceanic oxygenation and evolution of early life on Earth: New contributions from China. Journal of Earth Science, 2016, 27(2): 167‒169 https://doi.org/10.1007/s12583-016-0697-1

References

Anbar A. D., Knoll A. H. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge. Science, 2002, 297: 1137-1142.
CrossRef Google scholar
Canfield D. E. A New Model for Proterozoic Ocean Chemistry. Nature, 1998, 396: 450-453.
CrossRef Google scholar
Canfield D. E., Poulton S. W., Knoll A. H., . Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science, 2008, 321: 949-952.
CrossRef Google scholar
Chen X., Ling H. F., Vance D., . Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 2015, 6 7142
CrossRef Google scholar
Gill B. C., Lyons T. W., Young S. A., . Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 2011, 469(7328): 80-83.
CrossRef Google scholar
Guilbaud R., Poulton S. W., Butterfield N. J., . A Global Transition to Ferruginous Conditions in the Early Neoproterozoic Oceans. Nature Geoscience, 2015, 8(6): 466-470.
CrossRef Google scholar
Holland H. D. The Chemical Evolution of the Atmosphere and Oceans, 1984 Princeton, NJ: Princeton University Press, 582.
Holland H. D. The oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1470): 903-915.
CrossRef Google scholar
Jin C., Li C., Algeo T. J., . A Highly Redox-Heterogeneous Ocean in South China during the Early Cambrian (~529–514 Ma): Implications for Biota-Environment Co-Evolution. Earth and Planetary Science Letters, 2016, 441: 38-51.
CrossRef Google scholar
Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328(5974): 80-83.
CrossRef Google scholar
Li C., Planavsky N. J., Shi W., . Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems. Scientific Reports, 2015, 5 17097
CrossRef Google scholar
Lyons T. W., Reinhard C. T., Planavsky N. J. The Rise of Oxygen in Earth’s Early Ocean and atmosphere. Nature, 2014, 506(7488): 307-315.
CrossRef Google scholar
Planavsky N. J., Reinhard C. T., Wang X., . Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 2014, 346(6209): 635-638.
CrossRef Google scholar
Poulton S. W., Canfield D. E. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History. Elements, 2011, 7(2): 107-112.
CrossRef Google scholar
Poulton S. W., Fralick P. W., Canfield D. E. Spatial Variability in Oceanic Redox Structure 1.8 Billion Years Ago. Nature Geoscience, 2010, 3(7): 486-490.
CrossRef Google scholar
Sperling E. A., Wolock C. J., Morgan A. S., . Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 2015, 523: 451-454.
CrossRef Google scholar
Wang H., Li C., Hu C., . Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 2015, 26(6): 883-892.
Zhang S., Wang X., Wang H., . Sufficient Oxygen for Animal Respiration 1,400 Million Years Ago. Proceedings of the National Academy of Sciences of USA, 2016, 113(7): 1731-1736.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/