Preface: Atmospheric and oceanic oxygenation and evolution of early life on Earth: New contributions from China

Chao Li , Maoyan Zhu , Xuelei Chu

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 167 -169.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 167 -169. DOI: 10.1007/s12583-016-0697-1
Article

Preface: Atmospheric and oceanic oxygenation and evolution of early life on Earth: New contributions from China

Author information +
History +
PDF

Keywords

Cambrian / Black Shale / Phosphorite / Hutuo Group / Great Oxidation Event

Cite this article

Download citation ▾
Chao Li, Maoyan Zhu, Xuelei Chu. Preface: Atmospheric and oceanic oxygenation and evolution of early life on Earth: New contributions from China. Journal of Earth Science, 2016, 27(2): 167-169 DOI:10.1007/s12583-016-0697-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anbar A. D., Knoll A. H. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge. Science, 2002, 297: 1137-1142.

[2]

Canfield D. E. A New Model for Proterozoic Ocean Chemistry. Nature, 1998, 396: 450-453.

[3]

Canfield D. E., Poulton S. W., Knoll A. H., . Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science, 2008, 321: 949-952.

[4]

Chen X., Ling H. F., Vance D., . Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 2015, 6 7142

[5]

Gill B. C., Lyons T. W., Young S. A., . Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 2011, 469(7328): 80-83.

[6]

Guilbaud R., Poulton S. W., Butterfield N. J., . A Global Transition to Ferruginous Conditions in the Early Neoproterozoic Oceans. Nature Geoscience, 2015, 8(6): 466-470.

[7]

Holland H. D. The Chemical Evolution of the Atmosphere and Oceans, 1984 Princeton, NJ: Princeton University Press, 582.

[8]

Holland H. D. The oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1470): 903-915.

[9]

Jin C., Li C., Algeo T. J., . A Highly Redox-Heterogeneous Ocean in South China during the Early Cambrian (~529–514 Ma): Implications for Biota-Environment Co-Evolution. Earth and Planetary Science Letters, 2016, 441: 38-51.

[10]

Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328(5974): 80-83.

[11]

Li C., Planavsky N. J., Shi W., . Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems. Scientific Reports, 2015, 5 17097

[12]

Lyons T. W., Reinhard C. T., Planavsky N. J. The Rise of Oxygen in Earth’s Early Ocean and atmosphere. Nature, 2014, 506(7488): 307-315.

[13]

Planavsky N. J., Reinhard C. T., Wang X., . Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 2014, 346(6209): 635-638.

[14]

Poulton S. W., Canfield D. E. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History. Elements, 2011, 7(2): 107-112.

[15]

Poulton S. W., Fralick P. W., Canfield D. E. Spatial Variability in Oceanic Redox Structure 1.8 Billion Years Ago. Nature Geoscience, 2010, 3(7): 486-490.

[16]

Sperling E. A., Wolock C. J., Morgan A. S., . Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 2015, 523: 451-454.

[17]

Wang H., Li C., Hu C., . Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 2015, 26(6): 883-892.

[18]

Zhang S., Wang X., Wang H., . Sufficient Oxygen for Animal Respiration 1,400 Million Years Ago. Proceedings of the National Academy of Sciences of USA, 2016, 113(7): 1731-1736.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/