Middle–Upper Ordovician (Darriwilian–Early Katian) positive carbon isotope excursions in the northern Tarim Basin, northwest China: Implications for stratigraphic correlation and paleoclimate

Cunge Liu , Guorong Li , Dawei Wang , Yongli Liu , Mingxia Luo , Xiaoming Shao

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 317 -328.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 317 -328. DOI: 10.1007/s12583-016-0696-2
Article

Middle–Upper Ordovician (Darriwilian–Early Katian) positive carbon isotope excursions in the northern Tarim Basin, northwest China: Implications for stratigraphic correlation and paleoclimate

Author information +
History +
PDF

Abstract

Three positive carbon isotope excursions are reported from Middle–Upper Ordovician in Tahe oil-gas field, northern Tarim Basin. Based on conodont biostratigraphy, the Middle Darriwilian Isotope Carbon Excursion (MDICE) and the Guttenberg Carbon Isotope Excursion (GICE) are identified from Darriwilian to Early Katian by the aid of whole-rock carbon isotope data from two well cores. Positive excursion within conodont Pygodus anserinus zone is developed in Early Sandbian, and the fluctuation range is no less than MDICE. Because the range of this excursion in the generalized global carbon isotope curve is short, previous studies paid little attention to it, and named Early Sandbian Isotope Carbon Excursion (ESICE) in this paper. Furthermore, these positive excursions are not directly related to sea level fluctuations and the MDICE and GICE identified in northern Tarim can be globally correlated to that in southern China, North America, South America, and Europe. The Saergan Fm. source rocks of Middle-Upper Ordovician in Kalpin Dawangou outcrop are in accord with the geologic time of MDICE and ESICE, and GICE have strong ties to the source rock of Lianglitag Fm. in basin. Abundant organic carbon burial is an important factor in genesis of positive isotope carbon excursions. Positive oxygen isotope excursion, conodont fauna turnover, decreased conodont total diversity, and the change of sedimentary facies indicated that dramatic changes of paleoceanographic environment of Early-Middle Ordovician in Tarim Basin started from the end of Darriwillian, and an obvious icehouse climate of Late Ordovician occurred in ESICE.

Keywords

Tarim basin / Tahe oil-gas field / Darriwilian / Sandbian / Katian / carbon isotope / paleoclimate / source rock

Cite this article

Download citation ▾
Cunge Liu, Guorong Li, Dawei Wang, Yongli Liu, Mingxia Luo, Xiaoming Shao. Middle–Upper Ordovician (Darriwilian–Early Katian) positive carbon isotope excursions in the northern Tarim Basin, northwest China: Implications for stratigraphic correlation and paleoclimate. Journal of Earth Science, 2016, 27(2): 317-328 DOI:10.1007/s12583-016-0696-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ainsaar L. K., Martma T., . Middle and Upper Ordovician Carbon Isotope Chemostratigraphy in Baltoscandia: A Correlation Standard and Clues to Environmental History. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 294: 189-201.

[2]

Albanesi G. L., Bergström S. M., Schmitz B., . Darriwilian (Middle Ordovician) d13Ccarb Chemostratigraphy in the Precordillera of Argentina: Documentation of the Middle Darriwilian Isotope Carbon Excursion(MDICE) and Its Use for Intercontinental Correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 389: 48-63.

[3]

Bao Z. D., Jin Z. J., Sun L. D., . Sea-Level Fluctuation of the Tarim Area in the Early Paleozoic Respondence from Geochemistry and Karst. Acta Geologica sinica, 2006, 80(3): 366-373.

[4]

Bergström S. M., Young S., Schmitz B. Katian (Upper Ordocician) d13C Chemostratigraphy and Sequence Stratigraphy in the United States and Baltoscandia: A Regional Comparison. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296: 217-234.

[5]

Chen X., Wang Z. H. Global Auxiliary Stratotype Section of the Upper Ordovician in China. Journal of Stratigraphy, 2003, 27(3): 264-266.

[6]

Chen X., Zhang Y. D., Li Y., . Biostratigraphic Correlation of the Ordovician Black Shales in Tarim Basin and Its Peripheral Regions. Science China: Earth Sciences, 2012, 55(8): 1230-1237.

[7]

Cocks L. R. M. Blowing Hot and Cold in the Palaeozoic. Proceedings of the Geologists’ Association, 2007, 118: 225-237.

[8]

Cocks L. R. M., Torsvik T. H. The Dynamic Evolution of the Palaeozoic Geography of Eastern Asia. Earth-Science Reviews, 2013, 117: 40-79.

[9]

Deng X. J., Li G. R., Xu G. S., . Sequence Stratigraphic Study Prediction and Quality Evaluation of Reservoir for the Ordovician Yijianfang Formation of the Southern Part of Tahe Oilfield. Acta Sedmentologica Sinica, 2007, 25(3): 392-400.

[10]

Derry L. A., Kaufman A. J., Jacobsen S. B. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochim Cosmochim Acta, 1992, 56: 1317-1329.

[11]

Edwards C. T., Saltzman M. R. Carbon Isotope (d13Ccarb) Stratigraphy of the Lower-Middle Ordovician (Tremadocian-Darriwilian) in the Great Basin, Western United States: Implications for Global Correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 1-20.

[12]

Gao, Z. Y., Zhang, S. C., Zhang, X. Y., et al., 2007. Relations between Spatial Distribution and Sequence Types of the Cambrian-Ordovician Marine Source Rocks in Tarim Basin. Chinese Science Bulletin, 52(S–1): 70–77

[13]

Gradstein F. M., Ogg J. G., Schmitz M. D., . The Geologic Time Scale 2012 (Volume 1), 2012 London: Elsevier Science Ltd, 181-232.

[14]

Hu M. Y., Qian Y., Hu Z. G., . Carbon Isotopic and Element Geochemical Responses of Carbonate Rocks and Ordovician Sequence Stratigraphy in Keping Area, Tarim Basin. Acta Petrologica et Mineralogica, 2010, 29(2): 199-205.

[15]

Jing X. C., Du P. D., Zhang F., . A Preliminary Study on the Ordovician Conodont Biostratigraphy at the Yakrik Section, Northwestern Margin of the Tarim Basin, Xinjiang. Geological Review, 2010, 53(2): 242-250.

[16]

Jing X. C., Deng S. H., Zhao Z. J., . Carbon Isotope Composition and Correlation across the Cambrian-Ordovician Boundary in Kepin Region of the Tarim Basin,China. Science in China Series D: Earth Sciences, 2008, 51(9): 1317-1329.

[17]

Li Y., Huang Z. B., Wang J. P., . Conodont Biostratigraphy and Sedimentology of the Middle and Upper Ordovician in Bachu, Xinjiang. Journal of Stratigraphy, 2009, 33(2): 113-122.

[18]

Liu C. G., Li G. R., Zhu C. L., . Geochemistry Characteristics of Carbon, Oxygen and Strontium Isotopes of Calcites Filled in Karstic Fissure-Cave in Lower-Middle Ordovician of Tahe Oilfield, Tarim Basin. Earth Science—Journal of China University of Geosciences, 2008, 33(3): 377-386.

[19]

Liu C. G., Zhang Y., Lv H. T. Genesis and Evolution of Gigantic Calcites in Paleokarstic Caves of Middle-Lower Ordovician in Tahe Oilfield. Geological Science and Technology Information, 2008, 27(4): 33-38.

[20]

Liu C. G., Li T., Lv H. T., . Stratigraphic Division of Middle-Upper Ordovician and Characteristics of the First Episode Karstification of Middle Caledonian in Akekule Uplift Xinjiang, China. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(1): 55-63.

[21]

Liu H. B., Jin G. S., Li J. J., . Determination of Stable Isotope Composition in Uranium Geological Samples. World Nuclear Geoscience, 2013, 30(3): 174-179.

[22]

Liu J. Q., Li Z., Huang J. C., . Distinct Sedimentary Environments and Their Influences on Carbonate Reservoir Evolution of the Lianglitag Formation in the Tarim Basin, Northwest China. Science China: Earth Sciences, 2012, 55: 1641-1655.

[23]

Ludvigson G. A., Witzke B. J., Gonzalez L. A. Late Ordovician (Turinian-Chatfieldian) Carbon Isotope Excursions and Their Stratigraphic and Paleoceanographic Significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 210: 187-214.

[24]

Metzger, J. G., Fike, D, A., Smith, L. B., 2014. Applying Carbon-Isotope Stratigraphy Using Well Cuttings for High-Resolution Chemostratigraphic Correlation of the Subsurface. AAPG, 98(8): 1551–1576

[25]

Munnecke A., Calner M., Harper D.A.T., . Ordovician and Silurian Sea-Water Chemistry, Sea Level, and Climate: A Synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296: 389-413.

[26]

Munnecke A., Zhang Y. D., Liu X., . Stable Carbon Isotope Stratigraphy in the Ordovician of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307: 17-43.

[27]

Pancost R. D., Freeman K. H., Herrmann A. D., . Reconstructing Late Ordovician Carbon Cycle Variations. Geochimica et Cosmochimica Acta, 2013, 105: 433-454.

[28]

Rosenau N. A., Herrmann A. D., Leslie S. A. Conodont Apatite d18O Values from a Platform Margin Setting, Oklahoma, USA: Implications for Initiation of Late Ordovician Icehouse Conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 315–316: 172-180.

[29]

Saltzman M. R. Phosphorus, Nitrogen, and the Redox Evolution of the Paleozoic Oceans. Geology, 2005, 33(7): 573-576.

[30]

Saltzman M. R., Young S. A. Long-Lived Glaciation in the Late Ordovician?. Isotopic and Sequence-Stratigraphic Evidence from Western Laurentia. Geology, 2005, 33(2): 109-112.

[31]

Shields G. A., Carden G. A. F., Veizer J., . Sr, C and O Isotope Geochemistry of Ordovician Brachiopods: A Major Isotope Event around the Middle-Late Ordovician Transition. Geochimica et Cosmochimica Acta, 2003, 67(11): 2005-2025.

[32]

Sial A. N., Peralta S., Gaucher C., . High-Resolution Stable Isotope Stratigraphy of the Upper Cambrian and Ordovician in the Argentine Precordillera: Carbon Isotope Excursions and Correlations. Gondwana Research, 2013, 24: 330-348.

[33]

Thompson C. K., Kah L. C. A. R. Bentonite Geochronology, Marine Geochemistry, and the Great Ordovician Biodiversification Event (GOBE). Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 321–322: 88-101.

[34]

Trotter J. A., Williams I. S., Barnes C. R., . Did Cooling Oceans Trigger Ordovician Biodiversification?. Evidence from Conodont Thermometry. Science, 2008, 321: 550-554.

[35]

Wang D. R. Macro-Evidence of Carbonate Isotopes for the Middle-Upper Ordovician Source Rocks in the Tarim Basin. Geological Review, 2000, 46(3): 328-334.

[36]

Wang F. Y., Du Z. L., Zhang B. M., . Geochemistry of Salgan Black Shales of Middle-Upper Ordovician in Keping outcrop, Tarim Basin. Xinjiang Petroleum Geology, 2008, 29(6): 687-689.

[37]

Wang H. H., Li J. H., Yang J. Y., . Paleo-Plate Reconstruction and Drift Path of Tarim Block from Neoproterozic to Early Palaeozoic. Advances in Earth Scienc, 2013, 28(6): 637-647.

[38]

Wang X. L., Hu W. X., Li Q., . Negative Carbon Isotope Excursion on the Cambrian Series 2-Series 3 Boundary for Penglaiba section in Tarim Basin and Its significances. Geological Review, 2011, 57(1): 16-23.

[39]

Wang Y., Wang X. L., Wang Y. Cambrian Ichnofossils from the Zhoujieshan Formation (Quanji Group) Overlying Tillites in the Northern Margin of the Qaidam Basin, NW China. Journal of Earth Science, 2015, 26(2): 203-210.

[40]

Wang Z. H., Qi Y. P., Bergström S. M. Ordovician Conodonts of the Tarim Region, Xinjiang, China: Occurrence and Use as Palaeoenvironment Indicators. Journal of Asian Earth Sciences, 2007, 29: 832-843.

[41]

Wang Z. H., Li Y., Wang J. P., . Upper Ordovician Conodonts from the Central High Tarim Block,NW China. Acta Micropalaeontologica Sinica, 2009, 26(2): 97-116.

[42]

Wang Z. H., Wu R. C., Bergström S. M. rdovician Conodonts from the Lunnan Area of Northwestern Taklimakan Desert, Xinjiang, China, with Remarks on the Evolution of Pygodus. Acta Palaeontologica Sinica, 2013, 54(2): 408-423.

[43]

Wang Z. Z., Yang J. D. Features of the Carbon Isotope Changes in the Early Palaeozoic Rocks of the Kalpin Area, Xinjiang and Their Significance. Journal of Stratigraphy, 1994, 18(1): 45-52.

[44]

Wu R. C., Percival I. G., Stouge S., . Conodont Diversification during the Ordovician: A Perspective from North China and Tarim (Northwestern China). Science China: Earth Sciences, 2014, 57: 397-407.

[45]

Wu X. N., Shou J. F., Zhang H. L., . Characteristics of the Petroleum System in Cambrian and Ordovician Sequence Frameworks of the Tarim Basin and Its Exploration Significance. Acta petrolei sinica, 2012, 33(2): 225-231.

[46]

Xiong J. F., Wu T., Ye D. S. New Advances on the Study of Middle Late Ordovician Conodonts in Bachu, Xinjiang. Acta Palaeontologica Sinica, 2006, 45(3): 359-373.

[47]

Young S. A., Saltzman M. R., Bergström S. M., . Paried d13Ccarb and d13Corg Records of Upper Ordovician (Sandbian-Katian) Carbonates in North America and China: Implications for Paleoceanographic Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270: 166-178.

[48]

Zhang S. C., Wang R. L., Jin Z. J., . The Relationship between the Cambrian-Ordovician High-TOC Source Rock Development and Paleoenvironment Variations in the Tarim Basin, West China: Carbon and oxygen Isotope Evidence. Acta Geologica Sinica, 2006, 80(3): 459-466.

[49]

Zhang Y. D., Cheng J. F., Munnecke A., . Carbon Isotope Development in the Ordovician of the Yangtze Gorges Region (South China) and Its Implication for Stratigraphic Correlation and Paleoenvironmental Change. Journal of Earth Science, 2010, 21: 70-74.

[50]

Zhang Z. L., Li H. L., Tan G. H., . Carbon Isotope Chemostratigraphy of the Ordovician System in Central Uplift of the Tarim Basin. Journal of Stratigraphy, 2014, 38(2): 181-189.

[51]

Zhao M. J., Wang Z. M., Pan W. Q., . Lower Palaeozoic Source Rocks in Manjiaer Sag, Tarim Basin. PetroleumExploration and Development, 2008, 34(4): 417-423.

[52]

Zhao Z. J., Zhao Z. X., Huang Z. B. Ordovician Conodont Zones and Sedimentary Sequences of the Tarim Basin, Xinjiang, NW China. Journal of Stratigraphy, 2006, 30(3): 193-203.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/