The Ocean redox state evolution and its controls during the Cambrian Series 1–2: Evidence from Lijiatuo Section, South China

Lei Xiang, Chunfang Cai, Xunyun He, Lei Jiang, Yuyang Yuan, Tiankai Wang, Lianqi Jia, Lei Yu

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 255-270.

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 255-270. DOI: 10.1007/s12583-016-0695-3
Article

The Ocean redox state evolution and its controls during the Cambrian Series 1–2: Evidence from Lijiatuo Section, South China

Author information +
History +

Abstract

Well-exposed Lijiatuo Section was chosen to explore the temporal evolution and controls of the oceanic redox state, primary productivity and seawater sulfate levels during the Cambrian Series 1–2, South China. This section consists of Xiaoyanxi Formation (Fm.) mudstones and Liuchapo Fm. cherts that deposited in the slope and basin environment. Five oxic-anoxic cycles were identified based on V/Sc, Th/U and the enrichment factors of Mo, U, V, Ni and Cu. The Middle-Upper Liuchapo Fm. and the Middle Xiaoyanxi Fm. were deposited under oxic-suboxic conditions, and the rest of the strata were under anoxic conditions. The Re/Mo ratio demonstrated that the oxic-suboxic conditions in the Middle Xiaoyanxi Fm. were accompanied by transient sulfidic conditions, and the rest of the section was underanoxic and non-sulfidic conditions. All the TOC and the enrichment factors of Ba, Ni, Cu, Zn and Cd demonstrated that both the sinking and burial flux of organic matter (OM) in Liuchapo Fm. were lower than that in the overlying Xiaoyanxi Fm. The highest sinking and burial flux of OM in the Xiaoyanxi Fm. appeared at its lower parts; however, the lowest sinking and burial flux of OM in the Xiaoyanxi Fm. appeared in its middle parts. TOC/TS, TS and the vertical trend of δ34Spy demonstrated that the seawater was dominated by low oceanic sulfate levels, which resulted in the absence of free H2S. The rise of the atmospheric oxygen content may be the principal driver for the associated, transient suboxic-oxic and nearly sulfidic environment in the middle Xiaoyanxi Fm.

Keywords

trace element / redox state / seawater sulfate level / Cambrian Series 1–2 / South China

Cite this article

Download citation ▾
Lei Xiang, Chunfang Cai, Xunyun He, Lei Jiang, Yuyang Yuan, Tiankai Wang, Lianqi Jia, Lei Yu. The Ocean redox state evolution and its controls during the Cambrian Series 1–2: Evidence from Lijiatuo Section, South China. Journal of Earth Science, 2016, 27(2): 255‒270 https://doi.org/10.1007/s12583-016-0695-3

References

Algeo T. J., Lyons T. W. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 2006, 21: 1-23.
CrossRef Google scholar
Algeo T. J., Tribovillard N. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 2009, 268: 211-225.
CrossRef Google scholar
Algeo T. J., Henderson C. M., Tong J. N., . Plankton and Productivity during the Permian–Triassic Boundary Crisis: an Analysis of Organic Carbon Fluxes. Global and Planetary Change, 2013, 105: 52-67.
CrossRef Google scholar
Anbar A. D., Knoll A. H. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge. Science, 2002, 297: 1137-1142.
CrossRef Google scholar
Berner R. A., Raiswell R. C/S Method for Distinguishing Fresh Water from Marine Sedimentary Rocks. Geology, 1984, 12: 365-368.
CrossRef Google scholar
Berner R. A. Phanerozoic Atmospheric Oxygen: New Results Using the Geocarbsulf Model. American Journal of Science, 2009, 309: 603-606.
CrossRef Google scholar
Cai C. F., Xiang L., Yuan Y. Y., . Spatial Variability in Ocean Redox Conditions during Early Cambrian. Goldschmidt 2012 Conference Abstracts. Mineralogical Magazine, 2012, 76 1537.
Cai C. F., Xiang L., Yuan Y. Y., . Marine^C, S and N Biogeochemical Processes in the Redox-Stratified Early Cambrian Yangtze Ocean. Journal of the Geological Society (London)., 2015, 172(3): 390-406.
CrossRef Google scholar
Canfield D. E., Raiswell R., Westrich J. T., . The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 1986, 54: 149-155.
CrossRef Google scholar
Canfield D. E., Teske A. Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur Isotope Studies. Nature, 1996, 382: 127-132.
CrossRef Google scholar
Canfield D. E., Poulton S. W., Knoll A. H., . Ferruginous Conditions Dominated Later Neoproterozoic Deep Water Chemistry. Science, 2008, 321: 949-952.
CrossRef Google scholar
Cao C. Q., Love G. D., Hays L. E., . Biogeochemical Evidence for Euxinic Oceans and Ecological Disturbance Presaging the End-Permian Mass Extinction Event. Earth and Planetary Science Letters, 2009, 281: 188-201.
CrossRef Google scholar
Chang H. J., Chu X. L., Feng L. J., . Terminal Ediacaran Anoxia in Deep Ocean: Trace Element Evidence from Cherts of the Liuchapo Formation, South China. Science in China (Series D: Earth Sciences), 2009, 52: 807-822.
CrossRef Google scholar
Chang H. J., Chu X. L., Feng L. J., . Framboidal Pyrites in Cherts of the Laobao Formation, South China: Evidence for Anoxic Deep Ocean in the Terminal Ediacaran. Acta Petrologica Sinica, 2009, 25: 1001-1007.
Chang H. J., Chu X. L., Feng L. J., . Iron Speciation in Cherts from the Laobao Formation. Chinese Science Bulletin, 2010, 55: 3189-3196.
CrossRef Google scholar
Chang H. J., Chu X. L., Feng L. J., . Progressive Oxidation of Anoxic and Ferruginous Deep Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 321: 80-87.
CrossRef Google scholar
Chen D. Z., Wang J. G., Qing H. R., . Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 2009, 258: 168-181.
CrossRef Google scholar
Cremonese L., Shields-Zhou G. A., Struck U., . Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 2013, 225: 148-165.
CrossRef Google scholar
Feng L. J., Li C., Huang J., . A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529–521 Ma) Yangtze Block, South China. Precambrian Research, 2010, 246: 123-133.
CrossRef Google scholar
Grice K., Cao C. Q., Love G. D., . Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 2005, 307: 706-709.
CrossRef Google scholar
Galimov E. M. The Pattern of d13Corg versus HI/OI Relation in Recent Sediments as an Indicator of Geochemical Regime in Marine Basins: Comparison of the Black Sea, Kara Sea, and Cariaco Trench. Chemical Geology, 2004, 204: 287-301.
CrossRef Google scholar
Goldberg T., Strauss H., Guo Q. J., . Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 175-193.
CrossRef Google scholar
Gong C., Hollander D. J. Differential Contribution of Bacteria to Sedimentary Organic Matter in Oxic and Anoxic Environments, Santa Monica Basin, California. Organic Geochemistry, 1997, 26: 545-563.
CrossRef Google scholar
Guo Q. J., Shields G. A., Liu C. Q., . Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 194-216.
CrossRef Google scholar
Guo Q. J., Strauss H., Liu C. Q., . Carbon Isotopic Evolution of the Terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 140-157.
CrossRef Google scholar
Guo Q. J., Strauss H., Zhu M. Y., . High Resolution Organic Carbon Isotope Stratigraphy from a Slope to Basinal Setting on the Yangtze Platform, South China: Implications for the Ediacaran–Cambrian Transition. Precambrian Research, 2013, 225: 209-217.
CrossRef Google scholar
Ishikawa T., Ueno Y., Komiya T., . Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorge Area, South China: Prominent Global Scale Isotope Excursions just before the Cambrian Explosion. Gondwana Research, 2008, 14: 193-208.
CrossRef Google scholar
Jiang G. Q., Wang X. Q., Shi X. Y., . The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542–520 Ma) Yangtze Platform. Earth and Planetary Science Letters, 2012, 317–318: 96-110.
CrossRef Google scholar
Jiang S. Y., Pi D. H., Heubeck C., . Early Cambrian Ocean Anoxia in South China. Nature, 2009, 459: E5-E6.
CrossRef Google scholar
Johnston D. T., Poulton S. W., Dehler C., . An Emerging Picture of Neoproterozoic Ocean Chemistry, Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 2010, 290: 64-73.
CrossRef Google scholar
Kouchinsky A., Bengtson S., Runnegar B., . Chronology of Early Cambrian Biomineralization. Geological Magazine, 2012, 149: 221-251.
CrossRef Google scholar
Kimura H., Watanabe Y. Oceanic Anoxia at the Precambrian–Cambrian Boundary. Geology, 2001, 29: 995-998.
CrossRef Google scholar
Kump L. R., Junium C., Arthur M. A., . Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event. Science, 2011, 334: 1694-1696.
CrossRef Google scholar
Lehmann M. F., Bernasconi S. M., Barbieri A., . Preservation of Organic Matter and Alteration of Its Carbon and Nitrogen Isotope Composition during Simulated and in SituEarly Sedimentary Diagenesis. Geochimica et Cosmochimica Acta, 2002, 66: 3573-3584.
CrossRef Google scholar
Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328: 80-83.
CrossRef Google scholar
Li D., Ling H. F., Jiang S. Y., . New Carbon Isotope Stratigraphy of the Ediacaran–Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 2009, 146: 465-484.
CrossRef Google scholar
Li D., Ling H. F., Shields–Zhou G. A., . Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran–Cambrian Transition: Evidence from the Xiaotan Section, NE Yunnan, South China. Precambrian Research, 2013, 225: 128-147.
CrossRef Google scholar
Li G. X., Steiner M., Zhu X., . Early Cambrian Metazoan Fossil Record of South China: Generic Diversity and Radiation Patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 229-249.
CrossRef Google scholar
Luo H. L., Jiang Z. W., Wu X. C., . Sinian–Cambrian Boundary Stratotype Section at Meishucun, Jinning, Yunnan, China, 1984 Kunming: Yunnan People’s Publishing House, 1-154.
März C., Poulton S. W., Beckmann B., . Redox Sensitivity of P Cycling during Marine Black Shale Formation: Dynamics of Sulfidic and Anoxic, non–Sulfidic Bottom Waters. Geochimica et Cosmochimica Acta, 2008, 72: 3703-3717.
CrossRef Google scholar
Marshall C. R. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 2006, 34: 355-384.
CrossRef Google scholar
Morford J. L., Martin W. R., Carney C. M. Rhenium Geochemical Cycling: Insights from Continental Margins. Chemical Geology, 2012, 324: 73-86.
CrossRef Google scholar
Munoz P., Dezileau L., Lange C., . Evaluation of Sediment Trace Metal Records as Paleoproductivity and Paleoxygenation Proxies in the Upwelling Center off Concepcion, Chile (36° S). Progress in Oceanography, 2012, 92–95: 66-80.
CrossRef Google scholar
Och L., Shields–Zhou G. A., Poulton S. W., . Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 2013, 225: 166-189.
CrossRef Google scholar
Pang W. H., Ding X. Z., Gao L. Z., . Characteristics of Sequence Stratigraphy and Plaeoenvironmental Evolution of Lower Cambrian Strata in Hunan Province. Geology in China, 2011, 38: 560-576.
Peng S. C., Babcock L. E. Continuing Progress on Chronostratigraphic Subdivision of the Cambrian System. Bulletin Geoscience, 2011, 86: 391-396.
CrossRef Google scholar
Pi D. H., Liu C. Q., Shields–Zhou G. A., . Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China, Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 2013, 225: 218-229.
CrossRef Google scholar
Piper, D. Z., Calvert, S. E., 2009.A Marine Biogeochemical Perspective on Black Shale Deposition. Earth Science Reviews, 95: 63–96. doi: 10.1016/jearscirev.2009.03.001
Planavsky N. J., Rouxel O. J., Bekker A. L., . The Evolution of the Marine Phosphate Reservoir. Nature, 2010, 467: 1088-1090.
CrossRef Google scholar
Planavsky N. J., McGoldrick P., Scott C. T., . Widespread Iron–Rich Conditions in the Mid–Proterozoic Ocean. Nature, 2011, 477: 448-451.
CrossRef Google scholar
Qian Y., Yin G. Small Shelly Fossils from the Lowest Cambrian in Guizhou. Professional Papers of Stratigraphy and Palaeontology, 1984, 13: 91-124.
Raiswell R., Berner R. A. Pyrite Formation in Euxinic and Semi–Euxinic Sediments. American Journal of Science, 1985, 285: 710-724.
CrossRef Google scholar
Riquier L., Tribovillard N., Averbuch O., . The Late FrasnianKellwasser Horizons of the Harz Mountains (Germany): Two Oxygen Deficient Periods Resulting from Different Mechanisms. Chemical Geology, 2006, 233: 137-155.
CrossRef Google scholar
Ross D. J. K., Bustin R. M. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic–rich Strata: Examples from the Devonian–Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 2009, 260: 1-19.
CrossRef Google scholar
Sepúlveda J., Wendler J. E., Summons R. E., . Rapid Resurgence of Marine Productivity after the Cretaceous–Paleogene Mass Extinction. Science, 2009, 326: 129-132.
CrossRef Google scholar
Shen Y., Schidlowski M. New C Isotope Stratigraphy from Southwest China, Implications for the Placement of the Precambrian–Cambrian Boundary on the Yangtze Platform and Global Correlations. Geology, 2000, 28: 623-626.
CrossRef Google scholar
Shen S. Z., Crowley J. L., Wang Y., . Calibrating the End–Permian Mass Extinction. Science, 2011, 334: 1367-1372.
CrossRef Google scholar
Shu D. G. Cambrian Explosion: Formation of Tree of Animals. Journal of Earth Sciences and Environment, 2009, 31: 111-134.
Shu D. G., Zhang X. L., Han J. Restudy Of Cambrian Explosion and Formation of Animal Tree. Acta Palaeontologica Sinica, 2009, 48: 414-427.
Sperling E. A., Frieder C. A., Raman A. V. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 13446-13451.
CrossRef Google scholar
Steiner M., Li G. X., Qian Y., . Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 67-99.
CrossRef Google scholar
Strauss H. The Isotopic Composition of Sedimentary Sulfur through Time. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 132: 97-118.
CrossRef Google scholar
Strauss H. Geological Evolution from Isotope Proxy Signals–Sulfur. Chemical Geology, 1999, 161: 89-101.
CrossRef Google scholar
Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution, 1985 Mass: Blackwell, Malden
Tribovillard N., Algeo T. J., Lyons T., . Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 2006, 232: 12-32.
CrossRef Google scholar
Wang J., Li Z. X. History of NeoproterozoicRift basins in South China: Implications for RodiniaBreak–up. Precambrian Research, 2003, 122: 141-158.
CrossRef Google scholar
Wang J. G., Chen D. Z., Yan D. T., . Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran–Cambrian Transition and Implications for Bioradiation. Chemical Geology, 2012, 306: 129-138.
CrossRef Google scholar
Wang X. Q., Shi X. Y., Jiang G. Q., . New U–Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran–Cambrian Transition. Journal of Asian Earth Sciences, 2012, 48: 1-8.
CrossRef Google scholar
Wen H. J., Carignan J., Zhang Y., . Molybdenum Isotopic Records across the Precambrian–Cambrian Boundary. Geology, 2011, 39: 775-778.
CrossRef Google scholar
Wille M., Nagler T. F., Lehmann B., . Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 2008, 453: 767-769.
CrossRef Google scholar
Xiang L., Cai C. F., He X. Y., . The Mechanisms for the Enrichment of Trace Elements in the Lower Cambrian Black Chert Successions from Zhalagou Section, Guizhou Province. Acta Petrologica Sinica, 2012, 28(3): 971-980.
Xiang L. W., Zhu Z. L. Stratigrphy of China: Cambrian, 1999 Beijing: Geological Publishing House
Xiong Z. F., Li T. G., Algeo T., . Paleoproductivity and Paleoredox Conditions during Late Pleistocene Accumulation of Laminated Diatom Mats in the Tropical West Pacific. Chemical Geology, 2012, 334: 77-91.
CrossRef Google scholar
Yin G. Z. Division and Correlation of Cambrian in Guizhou. Guizhou Geology, 1996, 13: 115-128.
Yuan Y. Y., Cai C. F., Wang T. K., . Deep–Water Basin Redox Conditions during Ediacaran–Cambrian Transition Period in the Lower Yangtze, South China: Case Study of Iron Speciation and d13Corg In Diben Section, Zhejiang Province. Chinese Science Bulletin, 2014, 72: 1-139.
Zachos J. C., Rohl U., Schellenberg S. A., . Rapid Acidification of the Ocean during the Paleocene–Eocene Thermal Maximum. Science, 2005, 308: 1611-1615.
CrossRef Google scholar
Zhang T. G., Trela W., Jiang S. Y., . Major Oceanic Redox Condition Change Correlated with the Rebound of Marine Animal Diversity during the Late Ordovician. Geology, 2011, 39: 675-678.
CrossRef Google scholar
Zhang X. L., Shu D. G., Han J., . Triggers for the Cambrian explosion: Hypotheses and Problems. Gondwana Research, 2014, 25: 896-909.
CrossRef Google scholar
Zhou C. M., Zhang J. M., Li G. X., . Carbon and Oxygen Isotopic Record of the Early Cambrian from the Xiaotan Section, Yunnan, South China. Chinese Journal of Geology, 1997, 32: 201-211.
Zhu M. Y., Zhang J., Steiner M., . Sinian and Early Cambrian Stratigraphic Frameworks from Shallow to Deep Water Facies of the Yangtze Platform, an Integrated Approach.. Progress in Natural Science, 2003, 13(12): 951-960.
CrossRef Google scholar
Zhu M. Y. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 2010, 49: 269-287.

Accesses

Citations

Detail

Sections
Recommended

/