Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China

Yang Peng , Yongbo Peng , Xianguo Lang , Haoran Ma , Kangjun Huang , Fangbing Li , Bing Shen

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 242 -254.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 242 -254. DOI: 10.1007/s12583-016-0694-4
Article

Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China

Author information +
History +
PDF

Abstract

Global occurrences of Steptoean Positive Carbon Isotope Excursion (SPICE) during Late Cambrian recorded a significant perturbation in marine carbon cycle, and might have had profound impacts on the biological evolution. In previous studies, SPICE has been reported from the Jiangnan slope belt in South China. To evaluate the bathymetric extent of SPICE, we investigate the limestone samples from the upper Qingxi Formation in the Shaijiang Section in the Jiangnan Basin. Our results show the positive excursions for both carbonate carbon (δ13C) and organic carbon (δ13Corg) isotopes, as well as the concurrent positive shifts in sulfur isotopes of carbonate associated sulfate (CAS, δ34SCAS) and pyrite (δ34Spyrite), unequivocally indicating the presence of SPICE in the Jiangnan Basin. A 4‰ increase in δ13Ccarb of the Qingxi limestone implies the increase of the relative flux of organic carbon burial by a factor of two. Concurrent positive excursions in δ34SCAS and δ34Spyrite have been attributed to the enhanced pyrite burial in oceans with extremely low concentration and spatially heterogeneous isotopic composition of seawater sulfate. Here, we propose that the seawater sulfur isotopic heterogeneity can be generated by volatile organic sulfur compound (VOSC, such as methanethiol and dimethyl sulfide) formation in sulfidic continental margins that were widespread during SPICE. Emission of 32S-enriched VOSC in atmosphere, followed by lateral transportation and aerobic oxidation in atmosphere, and precipitation in open oceans result in a net flux of 32S from continental margins to open oceans, elevating δ34S of seawater sulfate in continental margins. A simple box model indicates that about 35% to 75% of seawater sulfate in continental margins needs to be transported to open oceans via VOSC formation.

Keywords

steptoean positive carbon isotope excursion / sulfur isotope / Qingxi Formation / South China / volatile organic sulfur compound

Cite this article

Download citation ▾
Yang Peng, Yongbo Peng, Xianguo Lang, Haoran Ma, Kangjun Huang, Fangbing Li, Bing Shen. Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China. Journal of Earth Science, 2016, 27(2): 242-254 DOI:10.1007/s12583-016-0694-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beerling D. J., Lake J. A., Berner R. A., . Carbon Isotope Evidence Implying High O2/CO2 Ratios in the Permo–Carboniferous Atmosphere. Geochimica et Cosmochimica Acta, 2002, 66(21): 3757-3767.

[2]

Berner R. A., Petsch S. T., Lake J. A., . Isotope Fractionation and Atmospheric Oxygen: Implications for Phanerozoic O2 Evolution. Science, 2000, 287: 1630-1633.

[3]

Berner R. A. Modeling Atmospheric O2 over Phanerozoic Time. Geochimica et Cosmochimica Acta, 2001, 65(5): 685-694.

[4]

Berner R. A. GEOCARBSULF: A Combined Model for Phanerozoic Atmospheric O2 And CO2. Geochimica et Cosmochimica Acta, 2006, 70(23): 5653-5664.

[5]

Brasier M. D., Corfield R. M., Derry L. A., . Multiple d13C Excursions Spanning the Cambrian Explosion to the Botomian Crisis in Siberia. Geology, 1994, 22: 455-458.

[6]

Canfield D. E., Farquhar J. Animal Evolution, Bioturbation, and the Sulfate Concentration of the Oceans. Proceedings of the National Academy of Sciences, 2009, 106(20): 8123-8127.

[7]

Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep–Water during Deposition of the Terminal Ediacaran Laobao Formation In South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321–322(0): 80–87

[8]

Chen D., Zhou X., Fu Y., . New U–Pb Zircon Ages of the Ediacaran–Cambrian Boundary Strata in South China. Terra Nova, 2015, 27(1): 62-68.

[9]

Cui H., Kaufman A. J., Xiao S., . Redox Architecture of an Ediacaran Ocean Margin: Integrated Chemostratigraphic (13C–34S–87Sr/86Sr–Ce/Ce*) Correlation of the Doushantuo Formation, South China. Chemical Geology, 2015, 405(0): 48-62.

[10]

Derry L. A. On The Significance of ?13C Correlations in Ancient Sediments. Earth and Planetary Science Letters, 2010, 296(3–4): 497-501.

[11]

Droser M. L., Bottjer D. J. Trends in Depth and Extent of Bioturbation in Cambrian Carbonate Marine Environments, Western United States. Geology, 1988, 16(3): 233-236.

[12]

Droser M. L., Bottjer D. J. Ordovician Increase in Extent and Depth of Bioturbation: Implications for Understanding Early Paleozoic Ecospace Utilization. Geology, 1989, 17(9): 850-852.

[13]

Fan H., Zhu X., Wen H., . Oxygenation of Ediacaran Ocean Recorded by Iron Isotopes. Geochimica et Cosmochimica Acta, 2014, 140(0): 80-94.

[14]

Feng L., Li C., Huang J., . A Sulfate Control on Marine Mid–Depth Euxinia on the Early Cambrian (Ca. 529–521 Ma) Yangtze Platform, South China. Precambrian Research, 2010, 246(0): 123-133.

[15]

Gill B. C., Lyons T. W., Young S. A., . Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 2011, 469(7328): 80-83.

[16]

Gould S. J. Wonderful Life: The Burgess Shale and the Nature of History, 1989 New York: Norton, 347.

[17]

Harper D. A. T. The Ordovician Biodiversification: Setting an Agenda for Marine Life. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2–4): 148-166.

[18]

Jacobsen S. B., Kaufman A. J. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 1999, 161: 37-57.

[19]

Jiang S. Y., Zhao H. X., Chen Y. Q., . Trace and rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 2007, 244(3–4): 584-604.

[20]

Jin C., Li C., Peng X., . Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China Earth Sciences, 2014, 57(4): 579-591.

[21]

Kampschulte A., Bruckschen P., Strauss H. The Sulphur Isotopic Composition of Trace Sulphates in Carboniferous Brachiopods: Implications for Coeval Seawater, Correlation with Other Geochemical Cycles and Isotope Stratigraphy. Chemical Geology, 2001, 205: 149-173.

[22]

Kampschulte A., Strauss H. The Sulfur Isotopic Evolution of Phanerozoic Seawater Based on the Analysis of Structurally Substituted Sulfate in Carbonates. Chemical Geology, 2004, 204: 255-286.

[23]

Kaufman A. J., Knoll A. H. Neoproterozoic Variations in the C–Isotope Composition Of Sea Water: Stratigraphic and Biogeochemical Implications. Precambrian Research, 1995, 73(3–4): 27-49.

[24]

Kiene R. P., Linn L. J. The Fate of Dissolved Dimethylsulfoniopropionate (DMSP) in Seawater: Tracer Studies Using 35S–DMSP. Geochimica et Cosmochimica Acta, 2000, 64(16): 2797-2810.

[25]

Knauth L. P., Kennedy M. J. The Late Precambrian Greening of the Earth. Nature, 2009, 460(7256): 728-732.

[26]

Kouchinsky A., Bengtson S., Gallet Y., . the SPICE Carbon Isotope Excursion in Siberia: A Combined Study of the Upper Middle Cambrian–Lowermost Ordovician Kulyumbe River Section, Northwestern Siberian Platform. Geological Magazine, 2008, 145 05

[27]

Lewis B. L., Andreae M. O., Froelich P. N. Sources and Sinks of Methylgermanium in Natural Waters. Marine Chemistry, 1989, 27(3–4): 179-200.

[28]

Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328(5974): 80-83.

[29]

Lomans B. P., Smolders A., Intven L. M., . Formation of Dimethyl Sulfide and Methanethiol in Anoxic Freshwater Sediments. Applied and Environmental Microbiology, 1997, 63(12): 4741-4747.

[30]

Loyd S. J., Marenco P. J., Hagadorn J. W., . Sustained Low Marine Sulfate Concentrations from the Neoproterozoic to the Cambrian: Insights from Carbonates of Northwestern Mexico and Eastern California. Earth and Planetary Science Letters, 2012, 339–340(0): 79-94.

[31]

Magalhães C., Salgado P., Kiene R. P., . Influence of Salinity on Dimethyl Sulfide and Methanethiol Formation in Estuarine Sediments and Its Side Effect on Nitrous Oxide Emissions. Biogeochemistry, 2012, 110(1–3): 75-86.

[32]

Marenco P. J., Corsetti F. A., Hammond D. E., . Oxidation of Pyrite during Extraction of Carbonate Associated Sulfate. Chemical Geology, 2008, 247: 124-132.

[33]

Meyer K. M., Kump L. R. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 2008, 36(1): 251-288.

[34]

Meyer K. M., Kump L. R., Ridgwell A. Biogeochemical Controls on Photic–Zone Euxinia during the End–Permian Mass Extinction. Geology, 2008, 36(9): 747-750.

[35]

Ng T. W., Yuan J. L., Lin J. P. The North China Steptoean Positive Carbon Isotope Excursion and Its Global Correlation with the Base of the Paibian Stage (Early Furongian Series), Cambrian. Lethaia, 2014, 47(2): 153-164.

[36]

Ng T. W., Yuan J. L., Lin J. P. The North China Steptoean Positive Carbon Isotope Event: New insights towards Understanding a Global Phenomenon. Geobios, 2014, 47(6): 371-387.

[37]

Oduro H. K., Jr A., Guo W., . Multiple Sulfur Isotope Analysis of Volatile Organic Sulfur Compounds and Their Sulfonium Precursors in Coastal Marine Environments. Marine Chemistry, 2011, 124(1–4): 78-89.

[38]

Oduro H. V., Alstyne K. L., Farquhar J. Sulfur Isotope Variability of Oceanic DMSP Generation and Its Contributions to Marine Biogenic Sulfur Emissions. Proceedings of the National Academy of Sciences, 2012, 109(23): 9012-9016.

[39]

Palmer A. R. Biomere:^A New Kind of Biostratigraphic Unit. Journal of Paleontology, 1965, 39(1): 149-153.

[40]

Palmer A. R. Trilobite of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States, 1965 Washington: United States Government Printing Office

[41]

Palmer A. R. Biomere Boundaries: A Possible Test for Extraterrestrial Perturbation of the Biosphere. Geological Society of America Special Papers, 1982, 190: 469-476.

[42]

Palmer A. R. The Biomere Problem: Evolution of an Idea. Journal of Paleontology, 1984, 58(3): 599-611.

[43]

Peng S., Babcock L. E. Peng S., Babcock L. E., Zhu M. Cambrian of the Hunan–Guizhou Region, South China. Cambrian System of South China (Palaeoworld No. 13), 2001 Hefei: University of Science and Technology of China Press, 3-51.

[44]

Peng S., Babcock L., Robison R., . Global Standard Stratotype–section and Point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia, 2004, 37(4): 365-379.

[45]

Peng Y., Bao H., Pratt L. M., . Widespread Contamination of Carbonate–Associated Sulfate by Present–Day Secondary Atmospheric Sulfate: Evidence from Triple Oxygen Isotopes. Geology, 2014, 42(9): 815-818.

[46]

Pingitore N. E. Jr., Meitzner G., Love K. M. Identification of Sulfate in Natural Carbonates by X–Ray Absorption Spectroscopy. Geochimica et Cosmochimica Acta, 1995, 59: 2477-2483.

[47]

Saltzman M. R., Ripperdan R. L., Brasier M. D., . A Global Carbon Isotope Excursion (SPICE) during the Late Cambrian: Relation to Trilobite Extinctions, Organic–Matter Burial and Sea Level. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 162(3–4): 211-223.

[48]

Saltzman M. R., Young S. A., Kump L. R., . Pulse of Atmospheric Oxygen during the Late Cambrian. Proceedings of the National Academy of Sciences, 2011, 108(10): 3876-3881.

[49]

Sepkoski J. J. Jr.. A Factor Analytic Description of the Phanerozoic Marine Fossil Record. Paleobiology, 2010, 7(1): 36-53.

[50]

Servais, T., Harper, D. A. T., Li, J., et al., 2009. Understanding the Great Ordovician Biodiversification Event (GOBE): Influences of Paleogeography, Paleoclimate, or Paleoecology? GAS Today, 19: doi: 10.1130/GSATG1137A.1131

[51]

Servais T., Owen A. W., Harper D. A. T., . The Great Ordovician Biodiversification Event (GOBE): The Palaeoecological Dimension. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 294(3–4): 99-119.

[52]

Shen B., Xiao S., Bao H., . Stratification and mixing of the Post–Glacial Neoproterozoic Ocean: Evidence from Carbon and Sulfur Isotopes in a Cap Dolostone from Northwest China. Earth and Planetary Science Letters, 2008, 265: 209-228.

[53]

Sial A. N., Peralta S., Ferreira V. P., . Upper Cambrian carbonate Sequences Of The Argentine Precordillera and the Steptoean C–Isotope Positive Excursion (SPICE). Gondwana Research, 2008, 13(4): 437-452.

[54]

Stitt J. H. Repeating Evolutionary Pattern in Late Cambrian Trilobite Biomeres. Journal of Paleontology, 1971, 45(2): 178-181.

[55]

Tang L., Chen X., Yang J., . A Restudy of the Ordovician to Earliest Silurian Graptolite Sequence from Xing'an, North Guangxi, China. Journal of Stratigraphy, 2010, 37(1): 1-7.

[56]

Tarhan L. G., Droser M. L. Widespread Delayed Mixing in Early to Middle Cambrian Marine Shelfal Settings. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399(0): 310-322.

[57]

Visscher P. T., Baumgartner L. K., Buckley D. H., . Dimethyl Sulphide and Methanethiol Formation in Microbial Mats: Potential Pathways for Biogenic Signatures. Environmental Microbiology, 2003, 5(4): 296-308.

[58]

Wang H., Li C., Hu C., . Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 2015, 26(6): 883-892.

[59]

Wang Y., Huang Z., Chen H., . Stratigraphical Correlation of the Liuchapo Formation with the Dengying Formation in South China. Journal of Jilin University (Earth Science Edition), 2012, 42: 328-335.

[60]

Wen H., Carignan J., Chu X., . Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian. Chemical Geology, 2014, 390(0): 164-172.

[61]

Woods M. A., Wilby P. R., Leng M. J., . The Furongian (Late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia. Journal of the Geological Society, 2011, 168(4): 851-862.

[62]

Wotte T., Shields–Zhou G. A., Strauss H. Carbonate–Associated Sulfate: Experimental Comparisons of Common Extraction Methods and Recommendations toward a Standard Analytical Protocol. Chemical Geology, 2012, 326–327(0): 132-144.

[63]

Yoch D. C. Dimethylsulfoniopropionate: Its Sources, Role in the Marine Food Web, and Biological Degradation to Dimethylsulfide. Applied and Environmental Microbiology, 2002, 68(12): 5804-5815.

[64]

Zhu M. Y., Zhang J. M., Li G. X., . Evolution of C Isotopes in the Cambrian of China: Implications for Cambrian Subdivision and Trilobite Mass Extinctions. Geobios, 2004, 37(2): 287-301.

[65]

Zhuravlev A. Y., Wood R. A. Anoxia as the Cause of the Mid–Early Cambrian (Botomian) Extinction Event. Geology, 1996, 24(4): 311-314.

[66]

Ziveri P., Stoll H., Probert I., . Stable Isotope ‘Vital Effects’ in Coccolith Calcite. Earth and Planetary Science Letters, 2003, 210(1–2): 137-149.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/