Contribution of oxygenic photosynthesis to palaeo-oceanic organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea: Evidence from black shale record

Kunyu Wu , Tingshan Zhang , Yang Yang , Yuchuan Sun , Daoxian Yuan

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 211 -224.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 211 -224. DOI: 10.1007/s12583-016-0693-5
Article

Contribution of oxygenic photosynthesis to palaeo-oceanic organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea: Evidence from black shale record

Author information +
History +
PDF

Abstract

The extensive transgression that occurred on the Yangtze Plate in Early Cambrian led to a massive organic carbon pool in the Niutitang Formation. A black shale core section from 3 251.08 to 3 436.08 m beneath the Earth’s surface was studied to estimate the contribution of oxygenic photosynthesis to organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea. Results indicate that the oxygenic photosynthesis played the most important role in carbon fixation in Early Cambrian. Organic carbon sink was mainly contributed by photosynthetic microorganisms, e.g., cyanobacteria, algae and archaea. The Niutitang Formation was formed in a deep anoxic marine shelf sedimentary environment at a sedimentation rate of ~0.09±0.03 mm/yr. The initial TOC abundance in Niutitang shale ranged from 0.18% to 7.09%, with an average of 2.15%. In accordance with the sedimentation rate and initial TOC abundance, organic carbon sink fluxes were calculated and found to range from 0.21 to 8.10×103 kg/km2·yr-1, especially the organic carbon sink fluxes in depth between 3 385 and 3 470 m range from 3.80 to 8.10×103 kg/km2·yr-1, with an average of ~6.03×103 kg/km2·yr-1, which is much higher than that of contemporary marine sediments. The organic carbon sink fluxes of Niutitang shale are equal to 0.56 to 21.61×103 kg/km2·yr-1 net oxygen emitted into the Early Cambrian ocean and atmosphere, this emitted oxygen may have significantly promoted the oxygen level of the Earth’s surface and diversification of metazoans.

Keywords

oxygenic photosynthesis / organic carbon sink / black shale / Early Cambrian / Upper Yangtze shallow sea

Cite this article

Download citation ▾
Kunyu Wu, Tingshan Zhang, Yang Yang, Yuchuan Sun, Daoxian Yuan. Contribution of oxygenic photosynthesis to palaeo-oceanic organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea: Evidence from black shale record. Journal of Earth Science, 2016, 27(2): 211-224 DOI:10.1007/s12583-016-0693-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Athy L. F. Density, Porosity, and Compaction of Sedimentary Rocks. American Association of Petroleum Geologists Bulletin, 1930, 14(1): 1-24.

[2]

Canfield, D. E.,1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396: 450–453. doi:10.1038/24839

[3]

Cai C., Xiang L., Yuan Y., . Marine C, S and N Biogeochemical Processes in the Redox-Stratified Early Cambrian Yangtze ocean. Journal of the Geological Society, London, 2015, 172: 390-406.

[4]

Chen J., Summons R. E. Complex Patterns of Steroidal Biomarkers in Tertiary Lacustrine Sediments of the Biyang Basin, China. Organic Geochemistry, 2001, 32: 115-126.

[5]

Compston W., Zhang Z., Cooper J. A., . Further SHRIMP Geochronology on the Early Cambrian of South China. American Journal of Science, 2008, 308: 399-420.

[6]

Dutta S., Greenwood P. F., Brocke R., . New Insights into the Relationship between Tasmanites and Tricyclic Terpenoids. Organic Geochemistry, 2006, 37: 117-127.

[7]

Du X., Wang P. Calculation of the Original Sedimentary Rate. Journal of Changchun University of Earth Sciences, 1992, 22(1): 67-70.

[8]

Dykstra J. Compaction Correction for Burial History Curves: Application to Lopatin's Method for Source Rock Maturation Determination. Geobyte, 1987, 87: 16-23.

[9]

Falkowski P. G., Barber R. T., Smetacek V. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science, 1998, 281: 200-206.

[10]

Feng Z., Peng Y., Jin Z., . Lithofacies PalaeoGeography of the Early Cambrian in China. Journal of Palaeogeography, 2002, 4(1): 1-12.

[11]

Feng L., Li C., Huang J., . A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529–521 Ma) Yangtze Platform, South China. Precambrian Research, 2010, 246: 123-133.

[12]

Fike D. A., Grotzinger J. P., Pratt L. M., . Oxidation of the Ediacaran Ocean. Nature, 2006, 444: 744-747.

[13]

Follows M. J., Dutkiewicz S., Grant S., . Emergent Biogeography of Microbial Communities in a Model Ocean. Science, 2007, 315: 1843-1846.

[14]

Fu J., Qin K. Kerogen Geochemistry, 1995 Guangzhou: Guangdong Science and Technology Press, 641.

[15]

Gao S., Ling W., Qiu Y., . Contrasting geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 1999, 63: 2071-2088.

[16]

Goossens H. d., Leeuw J. W., Schenck P. A., . Tocopherols as Likely Precursors of Pristane in Ancient Sediments and Crude Oils. Nature, 1984, 312: 440-442.

[17]

Grantham P. J., Wakefield L. L. Variations in the Sterane Carbon Number Distributions of Marine Source Rock Derived Crude Oils through Geological Time. Organic Geochemistry, 1988, 12: 61-73.

[18]

Greenwood P. F., Arouri K. R., George S. C. Tricyclic Terpenoid Composition of Tasmanites Kerogen as Determined by Pyrolysis GC–MS. Geochimica et Cosmochimica Acta, 2000, 64: 1249-1263.

[19]

He J., Duan Y., Zhang X., . Hydrocarbon Generation Conditions of the Shale in Niutitang Formation of Lower Cambrian, Southern Chongqing and Northern Guizhou. Marine Geology Frontiers, 2011, 27(7): 34-40.

[20]

Huang B., Zhu R., Otofuji Y., . The Early Paleozoic Paleogeography of the North China Block and the Other Major Blocks of China. Chinese Science Bulletin, 2000, 45(12): 1057-1065.

[21]

Jenkins R. J. F., Cooper J. A., Compston W. Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China. Journal of the Geological Society, London, 2002, 159: 645-658.

[22]

Jiang, S., Pi, D., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459: E5–E6. doi: 10.1038/nature08048

[23]

Jiao N., Herndl G. J., Hansell D. A., . Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean. Nature Reviews Microbiology, 2010, 8: 593-599.

[24]

Jin Q. The Restoration of Initial Organic Carbon in Source Rock. Journal of the University of Petroleum, China, 1989, 13(5): 1-8.

[25]

Johnston, D. T., Poulton, S. W., Goldberg, T., et al., 2012. Late Ediacaran Redox Stability and Metazoan Evolution. Earth and Planetary Science Letters, 335–336: 25–35. doi:10.1016/jepsl.2012.05.010

[26]

Jones B., Manning D. A. C. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 1994, 111: 111-129.

[27]

Li S., Wu C., Wu J., . A New Method for Compaction Correction. Experimental Petroleum Geology, 2010, 22(2): 110-114.

[28]

Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328: 80-83.

[29]

Li L., Xie J., Deng H., . Study on Characteristics and Its Stratigraphic Classification and Correlation of Cambrian in Sichuan Basin. Geology and Mineral Resources of South China, 2012, 28(3): 197-202.

[30]

Li M., Yao S., Ding H., . Geochemistry, Paleontology and Sedimentary Environment Significance of Niutitang Formation in Western Hunan Province of China. Journal of China Coal Society, 2013, 38(5): 857-863.

[31]

Li P., Xiong Y., Wang K., . SY/T 5124-1995, The Determination of Vitrinite Reflectance in Sedimentary Rock. China National Petroleum Corporation, 2010

[32]

Lian J., Zhao Z. Cohesive Sediment Entrainment from Soft Muddy Bed by Waves. Journal of Hydraulic Engineering, 1998, 8: 47-51.

[33]

Lin J., Fuller M., Zhang W. Paleogeography of the North and South China Blocks during the Cambrian. Journal of Geodynamics, 1985, 2(2–3): 91-114.

[34]

Lu S., Xue H., Zhong N. Simulating Calculation of the Variation of Organic Matter Abundance and Hydrocarbon–Generating Potential during Geological Processes. Geological Review, 2003, 49(3): 292-297.

[35]

Lyons T. W., Reinhard C. T., Planavsky N. J. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 2014, 506: 307-315.

[36]

Madigan M. T., Martinko J. M., Bender K. S., . Brock Biology of Microorganisms, 2014 Illinois: Pearson, 1005.

[37]

Maloof A. C., Ramezani J., Bowring S. A., . Constraints on Early Cambrian Carbon Cycling from the Duration of the Nemakit-Daldynian-Tommotian Boundary d13C shift, Morocco. Geology, 2010, 38: 623-626.

[38]

Marzi R., Torkelson B. E., Olson R. K. A Revised Carbon Preference Index. Organic Geochemistry, 2010, 20(8): 1303-1306.

[39]

McFadden K. A., Huang J., Chu X., . Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of National Academy of Sciences of the United States of America, 2008, 105(9): 3197-3202.

[40]

Meng F., Zhou C., Yan K., . Biological Origin of Early Palaeozoic and Precambrian Hydrocarbon Source Rocks Based on C27/C29 Sterane Ratio and Organic Carbon Isotope. Acta Micropalaeontologica Sinica, 2006, 23(1): 51-56.

[41]

Mou C., Liang W., Zhou K., . Sedimentary Facies and Palaeogeography of the Middle-Upper Yangtze Area during the Early Cambrian (Terreneuvian-Series 2). Sedimentary Geology and Tethyan Geology, 2012, 32(3): 41-53.

[42]

Pancost R. D., Colemana J. M., Love G. D., . Kerogen- Bound Glycerol Dialkyl Tetraether Lipids Released by Hydropyrolysis of Marine Sediments: A Bias against Incorporation of Sedimentary Organisms?. Organic Geochemistry, 2008, 39: 1359-1371.

[43]

Peng J. The Early Cambrian Balang Fauna from Guizhou, China: [Dissertation], 2005 Guiyang: Guizhou University, 1-7.

[44]

Peng S. Revision on Cambrian Chronostratigrapy of South China and Related Remarks. Journal of Stratigraphy, 2008, 32(3): 239-245.

[45]

Peng P., Qing Y., Zhang H., . Kinetics of Kerogen TransFormation by Heating in Closed System. Marine Origin Petroleum Geology, 2008, 13(2): 27-36.

[46]

Peng S. The Newly-Developed Cambrian Biostratigraphic Succession and Chronostratigraphic Scheme for South China. Chinese Science Bulletin, 2009, 54: 4161-4170.

[47]

Peters K. E., Walters C. C., Moldowan J. M. The Biomarker Guide, 2005 Cambridge: Cambridge University Press, 1132.

[48]

Piper D. Z. Seawater as the Source of Minor Elements in Black Shales, Phosphorites and Other Sedimentary Rocks. Chemical Geology, 1994, 117: 95-114.

[49]

Qin J., Zheng L. T. Study on the Restitution Coefficient of Original Total Organic Carbon for High Mature Marine Source Rocks. Frontiers of Earth Science in China, 2007, 1(4): 482-490.

[50]

Sawaki Y., Nishizawa M., Suo T., . Internal Structures and U-Pb Ages of Zircons from a Tuff Layer in the Meishucunian Formation, Yunnan Province, South China. Gondwana Research, 2008, 14: 148-158.

[51]

Scheffler K., Buehmann D., Schwark L. Analysis of Late Palaeozoic Glacial to Postglacial Sedimentary Successions in South Africa by Geochemical Proxies— Response to Climate Evolution and Sedimentary Environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240: 184-203.

[52]

Schieber J. Distribution and Deposition of Mudstone Facies in the Upper Devonian Sonyea Group of New York. Journal of Sedimentary Research, 1999, 69: 909-925.

[53]

Schouten S., Hopmans E. C., Pancost R. D., . Widespread Occurrence of Structurally Diverse Tetraether Membranelipids: Evidence for the Ubiquitous Presence of Low-Temperature Relatives of Hyperthermophiles. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 14421-14426.

[54]

Schumacher B. A. Methods for the Determination of Total Organic Carbon (TOC) in Soil and Sediments. U. S. United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory, 2002

[55]

Scotese C. R., Mckrrow W. S. Revised World Maps and Introduction. Geological Society, 1990, 12: 1-21.

[56]

Sperlinga E. A., Friederb C. A., Ramanc A. V., . Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of National Academy of Sciences of the United States of America, 2013, 110(33): 13446-13451.

[57]

Sperling E. A., Halverson G. P., Knoll A. H., . A Basin Redox Transect at the Dawn of Animal Life. Earth and Planetary Science Letters, 2013, 371–372: 143-155.

[58]

Steiner M., Li G., Qian Y., . Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 67-99.

[59]

Ten Haven H. L., de Leeuw J. W., Peakman T. M., . Anomalies in Steroid and Hopanoid Maturity Indices. Geochimica et Cosmochimica Acta, 1986, 50: 853-855.

[60]

Tissot B. P., Welte D. H. Petroleum Formation and Occurrence: Second Revised and Enlarged Edition, 1984 Berlin: Springer-Verlag, 699

[61]

Volkman J. K. A review of Sterol Markers for Marine and Terrigenous Organic Matter. Organic Geochemistry, 2010, 9: 83-99.

[62]

Volkman J. K., Barrett S. M., Dunstan G. A., . Sterol Biomarkers for Microalgae from the Green Algal Class Prasinophyceae. Organic Geochemistry, 1994, 21: 1211-1218.

[63]

Wang H., Li C., Hu C., . Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 2015, 26(6): 883-892.

[64]

Wang X., Shi X., Jiang G., . New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran–Cambrian Transition. Journal of Asia Earth Science, 2012, 48: 1-18.

[65]

Xu G., Hu W. SY/T 5116-1997, The Determination of Total Organic Carbon in Sedimentary Rock, 2010

[66]

Xu L., Lehmann B., Mao J., . Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China—A Reassessment. Economic Geology, 2011, 106: 511-522.

[67]

Yang Q., Qi J. Method of Delaminated Decompaction Correction. Petroleum Geology & Experiment, 2003, 25(2): 206-210.

[68]

Yang P., Wang Z. J., Xie Y., . The Biomarker Characteristics and Sedimentary Environment of Lower Cambrian Niutitang Formation Source Rock in Northern Guizhou. Geological Bulletin of China, 2012, 31(11): 1910-1921.

[69]

Zhang C., Jiang W., Pan H. Application and Principles of Sonic Logging, 2009 Beijing: Petroleum Industry Press, 189.

[70]

Zhang C., Zhang W., Guo Y. Sedimentary Environment and its Effect on Hydrocarbon Source Rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou. Earth Science Frontiers, 2012, 19(1): 136-145.

[71]

Zhang H., Peng P., Liu D., . Weight Loss of Organic Matter, Organic Carbon, Hydrogen and Nitrogen in an Open System: Kinetic Approaches. Acta Geologica Sinica, 2008, 82(5): 710-720.

[72]

Zhou M., Luo T., Li Z., . SHRIMP U-Pb Zircon Age of Tuff at the Bottom of the Lower Cambrian Niutitang Formation, Zunyi, South China. Chinese Science Bulletin, 2010, 53(4): 576-583.

[73]

Zhou M., Luo T., Liu S., . SHRIMP Zircon Age for a K-Bentonite in the Top of the Laobao Formation at the Pingyin Section, Guizhou, South China. Science China: Earth Sciences, 2010, 56: 1677-1687.

[74]

Zhu M., Zhang J., Steiner M., . Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 2003, 13(12): 951-960.

AI Summary AI Mindmap
PDF

205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/