Secondary phosphatization of the earliest Cambrian small shelly fossil Anabarites from southern Shaanxi

Yali Chen , Xuelei Chu , Xingliang Zhang , Mingguo Zhai

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 196 -203.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 196 -203. DOI: 10.1007/s12583-016-0691-7
Article

Secondary phosphatization of the earliest Cambrian small shelly fossil Anabarites from southern Shaanxi

Author information +
History +
PDF

Abstract

Biomineralization may have an extremely long evolutionary history since the Paleoarchean, while the widespread biomineralization among metazoan lineages started at the earliest Cambrian. However, the primary mineralogy of Anabarites shell remains controversial. Optical microscopic observations combined with the Back-Scattered Electron (BSE) and Energy-Dispersive X-ray Spectroscopy (EDS) analyses are used to study the shell of the fossil Anabarites from the Kuanchuanpu fauna in southern Shaanxi Province in China, which is correlated to the Cambrian Fortunian Stage. The EDS analysis shows that the phosphorus-rich layer closely adjacent to the calcified layer exhibits a Ca: P: C ratio compositionally similar to the mineral fluorapatite (Ca5(PO4,CO3)3(F,CO3). The result that the calcified layer and the phosphorus-rich layer have different chemical compositions is consistent with the optical observation that there is an obvious gap between these two layers and the phosphorus-rich layer can extend to the phosphatic material inside of the tube, suggesting the phosphorus-rich layer doesn’t belong to the original shell. We suggest that the phosphorous-rich layer is diagenetic in origin, precipitated as a result of phosphorus release during the decay of organic matter by microbes. Considering the outermost shell layer (OMS, biologically controlled carbonate shell layer) should display different isotopic information from the carbonate matrix (i.e., OMS is 12C concentrated due to the biogenic organic matter template is readily rich in 12C), NanoSIMS was used to map ion distributions of C and N in the shell of Anabarites and matrix. However, ion images show that the concentration differences of 12C, 13C and 26CN among the OMS and the matrix are unclear, while 12C and 26CN are supposed to be enriched in the OMS. Therefore, the minor isotopic differences between the shell and the matrix is hard to be detected by NanoSIMS, at least in our sample, probably due to alteration of the 12C-rich characteristic of the Anabarites OMS during the late diagenesis.

Keywords

biomineralization / Anabarites / Fortunian Stage / phosphatization / NanoSIMS / southern Shaanxi

Cite this article

Download citation ▾
Yali Chen, Xuelei Chu, Xingliang Zhang, Mingguo Zhai. Secondary phosphatization of the earliest Cambrian small shelly fossil Anabarites from southern Shaanxi. Journal of Earth Science, 2016, 27(2): 196-203 DOI:10.1007/s12583-016-0691-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abaimova G. P. Anabaritids–Ancient Fossils with Carbonate Skeleton. Trudy^SNIIGGIMS, 1978, 260: 77-83.

[2]

Allison P. A. Konservat-Lagerstatten: Cause and Classification. Paleobiology, 1988, 14: 331-344.

[3]

Atlas E. L. Phosphate Equilibria in Seawater and Interstitial Waters: [Dissertation], 1975 Oregon state: Oregon State University

[4]

Brasier M. D. Lipps J. H., Signor P. W. Paleoceanography and Changes in the Biological Cycling of Phosphorus across the Precambrian-Cambrian Boundary. Origin and Early Evolution of the Metazoa, 1992 New York: Plenum Publishing Co., 483-523.

[5]

Briggs D. E., Kear A. J. Decay and Mineralization of Shrimps. Palaios, 1994, 9: 431-456.

[6]

Briggs D. E., Wilby P. R. The Role of the Calcium Carbonate-Calcium Phosphate Switch in the Mineralization of Soft-Bodied Fossils. Journal of the Geological Society, 1996, 153: 665-668.

[7]

Cai Y. P., Hua H., Xiao S. H., . Biostratinomy of the Late Ediacaran Pyritized Gaojiashan Lagerstatte from Southern Shaanxi, South China: Importance of Event Deposits. Palaios, 2010, 25: 487-506.

[8]

Chen J. Y., Peng Q. Q. An Early Cambrian Problematic Organism (ANABARITES) and its Possible Affinity (Chinese). Acta Palaeontologica Sinica, 2005, 44: 57-65.

[9]

Chen Y. Q., Jiang S. Y., Ling H. F., . Isotopic Compositions of Small Shelly Fossil Anabarites from Lower Cambrian in Yangtze Platform of South China: Implications for Palaeocean Temperature. Progress in Natural Science, 2007, 17: 1185-1191.

[10]

Conway Morris S., Chen M. E. Lower Cambrian Anabaritids from South China. Geological Magazine, 1989, 126: 615-632.

[11]

Creveling J. R., Johnston D. T., Poulton S. W., . Phosphorus Sources for Phosphatic Cambrian Carbonates. Geological Society of America Bulletin, 2014, 126: 145-163.

[12]

Degens E. T. Degens E. T., Luck W. A. P., Perrin D. D. Molecular Mechanisms on Carbonate, Phosphate, and Silica Deposition in the Living Cell. Topics in Current Chemistry-Inorganic Biochemistry, 1976 Berlin: Springer, 1-112.

[13]

Ding L. F., Zhang L. Y., Li Y., . The Study of the Late Sinian-Early Cambrian Biotas from the Northern Margin of the Yangtze Platform (Chinese), 1992 Beijing: Scientific and Technical Documentation Press, 1-156.

[14]

Dzik J. Turrilepadida and Other Machaeridia. Problematic Fossil Taxa, 1986, 5: 116-134.

[15]

Fedonkin M. Hoffman A., Nitecki M. H. Precambrian Problematic Animals: Their Body Plan and Phylogeny. Problematic Fossil Taxa, 1986 New York: Oxford University Press, 59-67.

[16]

Feng M. Comparison of the Early Cambrian Anabarites between Ningqiang area, Shaanxi and Chaohu Area, Anhui (Chinese). Acta Micropalaeontologica Sinica, 2005, 22: 412-416.

[17]

Fortin D., Ferris F. G., Beveridge T. J. Surface-Mediated Mineral Development by Bacteria. Reviews in mineralogy and geochemistry, 1997, 35: 161-180.

[18]

Frankel R. B., Bazylinski D. A. Biologically Induced Mineralization By Bacteria. Reviews in mineralogy and geochemistry, 2003, 54: 95-114.

[19]

Glaessner M. F. Early Phanerozoic Annelid Worms and Their Geological and Biological Significance. Journal of the Geological Society, 1976, 132: 259-275.

[20]

Kouchinsky A. Shell Microstructures in Early Cambrian Molluscs. Acta Palaeontologica Polonica, 2000, 45: 119-150.

[21]

Kouchinsky A., Bengtson S., Feng W. M., . The Lower Cambrian Fossil Anabaritids: Affinities, Occurrences and Systematics. Journal of Systematic Palaeontology, 2009, 7: 241-298.

[22]

Li P., Hua H., Zhang L. Y., . Internal Microstructure and Affinity of the Lower Cambrian Anabarites from Southern Shaanxi, China (Chinese). Acta Palaeontologica Sinica, 2007, 46: 327-333.

[23]

Missarzhevsky V. V. Rozanov A. Yu., Missarzhevsky V. V., Volkova N. A., Voronova L. G., Krylov I. N., Keller B. M., Korolyuk I. K., Lendzion K., Mikhnyak R., Pykhova N. G., Sidorov A. D. Opisanie Khiolitov, Gastropod, Khiolitel'mintov, Kamenidi form Neyasnogo Sistematicheskogo Polozheniya [Descriptions of Hyoliths, Gastropods, Hyolithelminths, Camenids, and Forms of An Obscure Systematic Position]. Tommotskij yarus i problema nizhnej granitsy Kembriya, 1969 Moscow: Nauka Publishers, 105-175.

[24]

Missarzhevsky V. V. Zhuravleva I. T., Rozanov A. Y. Novye Dannye o Drevnejshikh Okamenelostyakh Rannego Kembriya Sibirskoj Platformy [New data on the Oldest Early Cambrian Fossils of the Siberian Platform]. Biostratigrafiya I Paleontologiya Nizhnego Kembryiya Evropy I Severnoj Azii, 1974 Moscow: Nauka, 179-189.

[25]

Runnegar B. Shell Microstructures of Cambrian Molluscs Replicated by Phosphate. Alcheringa, 1985, 9: 245-257.

[26]

Skinner H., Jahren A. Biomineralization. Treatise on geochemistry, 2003, 8: 117-184.

[27]

Steiner M., Li G. X., Qian Y., . Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 67-99.

[28]

Tebo B. M., Ghiorse W. C., van Waasbergen L. G., . Bacterially Mediated Mineral Formation; Insights into Manganese (II) Oxidation from Molecular Genetic and Biochemical Studies. Reviews in Mineralogy and Geochemistry, 1997, 35: 225-266.

[29]

Vol'kov A. K. Biostratigrafiya Nizhnego Kembriya Vostoka Sibirskoj Platformy, 1982, 1-99.

[30]

Voronova L. G., Missarzhevsky V. V. Nakhodki Vodoroslej I Trubok Chervej V Pogranichnykh Sloyakh Kembriya I Dokembriya Na Severe Sibirskoj Platformy [Finds of Algae and Worm Tubes in the Precambrian–Cambrian Boundary Beds of the Northern Part of the Siberian Platform]. Doklady^AN SSSR, 1969, 184: 207-210.

[31]

Weiner S., Dove P. M. An Overview of Biomineralization Processes and the Problem of the Vital Effect. Reviews in mineralogy and geochemistry, 2003, 54: 1-29.

[32]

Zhang X. L. Lecture Notes of Geobiology, 2012 Beijing: Geological Publishing House

[33]

Zhu M. Y., Qian Y., Jiang Z. W., . A Preliminary Study on the Preservation, Shell Composition and Microstructure of Cambrian Small Shelly Fossils (Chinese). Acta Micropalaeontologica Sinica, 2010, 13: 241-254.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/