PDF
Abstract
Hypoxic tolerance experiments may be helpful to constrain the oxygen requirement for animal evolution. Based on literature review, available data demonstrate that fishes are more sensitive to hypoxia than crustaceans and echinoderms, which in turn are more sensitive than annelids, whilst mollusks are the least sensitive. Mortalities occur where O2 concentrations are below 2.0 mg/L, equivalent to saturation with oxygen content about 25% PAL (present atmospheric level). Therefore, the minimal oxygen requirement for maintaining animal diversity since Cambrian is determined as 25% PAL. The traditional view is that a rise in atmospheric oxygen concentrations led to the oxygenation of the ocean, thus triggering the evolution of animals. Geological and geochemical studies suggest a constant increase of the oxygen level and a contraction of anoxic oceans during Ediacaran–Cambrian transition when the world oceans experienced a rapid diversification of metazoan lineages. However, fossil first appearances of animal phyla are obviously asynchronous and episodic, showing a sequence as: basal metazoans>lophotrochozoans>ecdysozoans and deuterostomes. According to hitherto known data of fossil record and hypoxic sensitivity of animals, the appearance sequence of different animals is broadly consistent with their hypoxic sensitivity: animals like molluscs and annelids that are less sensitive to hypoxia appeared earlier, while animals like echinoderms and fishes that are more sensitive to hypoxia came later. Therefore, it is very likely that the appearance order of animals is corresponding to the increasing oxygen level and/or the contraction of anoxic oceans during Ediacaran–Cambrian transition.
Keywords
oxygenation
/
Cambrian explosion
/
metazoan lineages
/
divergence
/
fossil first appearance
Cite this article
Download citation ▾
Xingliang Zhang, Linhao Cui.
Oxygen requirements for the Cambrian explosion.
Journal of Earth Science, 2016, 27(2): 187-195 DOI:10.1007/s12583-016-0690-8
| [1] |
Antcliffe J. B., Callow R. H. T., Brasier M. D. Giving the Early Fossil Record of Sponges A Squeeze. Biological Reviews, 2014, 89: 972-1004.
|
| [2] |
Berkner L. V., Marshall L. C. On the Origin and Rise of Oxygen Concentration in the Earth’s Atmosphere. Journal of Atmospheric Sciences, 1965, 22: 225-261.
|
| [3] |
Blair J. E. Hedges S. B., Kumar S. Animals (Metazoa). The Timetree of Life, 2009 Oxford: Oxford University Press, 223-230.
|
| [4] |
Braddy S. J., Poschmann M., Tetlie O. E. Giant Claw Reveals the Largest Ever Arthropod. Biology Letter, 2008, 4: 106-109.
|
| [5] |
Butterfield N. J. Oxygen, Animals and Oceanic Ventilation: An Alternative View. Geobiology, 2009, 7: 1-7.
|
| [6] |
Campbell I. H., Allen C. M. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 2008, 1: 554-558.
|
| [7] |
Campbell I. H., Squire R. J. The Mountains that Triggered the Late Neoproterozoic Increase in Oxygen: the Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 2010, 74: 4187-4206.
|
| [8] |
Canfield D. E. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Science, 2005, 33: 1-36.
|
| [9] |
Canfield D. E., Poulton S. W., Narbonne G. M. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 2007, 315: 92-95.
|
| [10] |
Catling D. C., Glein C. R., Zahnle K. J., . Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary “Oxygenation Time”. Astrobiology, 2005, 5: 415-438.
|
| [11] |
Chen X., Ling H. F., Vance D., . Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 2015, 6 7142
|
| [12] |
Cloud P. E. Jr. Some Problems and Patterns of Evolution Exemplified by Fossil Invertebrates. Evolution, 1948, 2: 322-350.
|
| [13] |
Cloud P. E. Beginnings of Biospheric Evolution and Their Biogeochemical Consequences. Paleobiology, 1976, 2: 351-387.
|
| [14] |
Conway M. S., Peel J. S. The Earliest Annelids: Lower Cambrian Polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontologica Polonica, 2008, 53: 137-148.
|
| [15] |
Danovaro R., Dell’Anno A., Pusceddu A., Gambi C., Heiner I., Kristensen R.M. The First Metazoa Living in Permanently Anoxic Conditions. BMC Biology, 2010, 8 30
|
| [16] |
Decker H., van Holde K. E. Oxygen and the Evolution of Life, 2011 Berlin: Springer, 172
|
| [17] |
Diaz R. J., Rosenberg R. Marine Benthic Hypoxia: A Review of Its Ecological Effects and the Behavioural Responses of Benthic Macrofauna. Oceanography and Marine Biology: An Annual Review, 1995, 33: 245-303.
|
| [18] |
Dries R. R., Theede H. Sauerstoffmangelresistenz Mariner Bodenvertebraten aus der Westlichen Ostsee. Marine Biology, 1974, 25: 327-333.
|
| [19] |
Erwin D. H., Laflamme M., Tweedt S. M., . The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 2011, 334: 1901-1907.
|
| [20] |
Erwin D. H., Tweedt S. Ecological Drivers of the Ediacaran-Cambrian Diversification of Metazoa. Evolutionary Ecology, 2012, 26: 417-433.
|
| [21] |
Erwin D. H., Valentine J. W. The Cambrian Explosion: the Construction of Animal Biodiversity, 2013 Greenwood Village: Roberts and Company Publishers, Inc., 406.
|
| [22] |
Fedonkin M. A., Waggoner B. M. The Late Precambrian Fossil Kimberella Is a Mollusc-Like Bilaterian Organism. Nature, 1997, 388: 868-871.
|
| [23] |
Feng L. J., Li C., Huang J., . A sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 2014, 246: 123-133.
|
| [24] |
Gray J. S., Wu R. S., Or Y. Y. Effects of Hypoxia and Organic Enrichment on the Coastal Marine Environment. Marine Ecology Progress Series, 2002, 238: 249-270.
|
| [25] |
Henriksson R. Influence of Pollution on the Bottom Fauna of the Sound (Öresund). Oikos, 1969, 20: 507-523.
|
| [26] |
Hua H., Chen Z., Yuan X. L., . Skeletogenesis and Asexual Reproduction in the Earliest Biomineralizing Animal Cloudina. Geology, 2005, 33: 277-280.
|
| [27] |
Jin C. S., Li C., Peng X. F., . Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China: Earth Science, 2014, 57: 579-591.
|
| [28] |
Kasting J. F. Earth’s Early Atmosphere. Science, 1993, 259: 920-926.
|
| [29] |
Kendall B., Anbar A. D., Kappler A., . Knoll A. H., Canfield D. E., Konhauser K. O., . The Global Iron Cycle. Fundamentals of Geobiology, 2012 Oxford: Wiley-Blackewll, 65-92.
|
| [30] |
Knoll A. H., Sperling E. A. Oxygen and Animals in Earth History. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 3907-3908.
|
| [31] |
Knoll A.H., Carroll S.B. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 1999, 284: 2129-2137.
|
| [32] |
Knoll A. H., Walter M. R. Latest Proterozoic Stratigraphy and Earth History. Nature, 1992, 356: 673-678.
|
| [33] |
Kouchinsky A., Bengtson S., Clausen S., . A Lower Cambrian Fauna of Skeletal Fossils from the Emyaksin Formation, Northern Siberia. Acta Palaeontologica Polonica, 2015
|
| [34] |
Kouchinsky A., Bengtson S., Runnegar B., . Chronology of Early Cambrian Biomineralization. Geological Magazine, 2012, 149: 221-251.
|
| [35] |
Kump L. R. The Rise of Atmospheric Oxygen. Nature, 2008, 451: 277-278.
|
| [36] |
Landing E., Geyer G., Brasier M. D., . Cambrian Evolutionary Radiation: Context, Correlation, and Chronostratigraphy—Overcoming Deficiencies of the First Appearance Datum (FAD) Concept. Earth-Science Reviews, 2013, 123: 133-172.
|
| [37] |
Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328: 80-83.
|
| [38] |
Li Z. X., Powell C. M. An Outline of the Palaeongeographic Evolution of the Australasian Region since the Beginning of the Neoproterozoic. Earth-Science Review, 2001, 53: 237-277.
|
| [39] |
Ling H. F., Chen X., Li D., . Cerium Anomaly Variations in Ediacaran–Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater. Precambrian Research, 2013, 225: 110-127.
|
| [40] |
Love G. D., Grosjean E., Fike D. A., . Fossil Steroid Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 2009, 457: 718-721.
|
| [41] |
Lyons T. W., Reinhard C. T., Love G. D., . Knoll A. H., Canfield D. E., Konhauser K. O., . Geobiology of the Proterozoic Eon. Fundamentals of Geobiology, 2012 Oxford: Wiley-Blackewll, 371-402.
|
| [42] |
Mángano M. G., Buatois L. A. Decoupling of Body-Plan Diversification and Ecological Structuring during the Ediacaran–Cambrian Transition: Evolutionary and Geobiological Feedbacks. Proceedings of the Royal Society B, 2014, 281 20140038
|
| [43] |
Meert J. G. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Special Publication 206, Eos, Transactions American Geophysical Union, 2003, 84 372
|
| [44] |
Meert J. G. Reitner J., Thiel V. Gondwanaland, Formation. Encyclopedia of Geobiology, 2011 Berlin: Springer, 434-436.
|
| [45] |
Mentel M., Martin W. Anaerobic Animals from an Ancient, Anoxic Ecological Niche. BMC Biology, 2010, 8 32
|
| [46] |
Miller D. C., Poucher S.L., Coiro L., . McElroy A., Zeidner J., . Effects of Hypoxia on Growth and Survival of Crustaceans and Fishes of Long Island Sound. Proceedings of the Long Island Sound Research Conference: Is the Sound Getting Better or Worse, 1995 Stony Brook, NY: New York Sea Grant Institute, p1-92.
|
| [47] |
Mills D. B., Ward L. M., Jones C. A., . Oxygen Requirements of the Earliest Animals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 4168-4172.
|
| [48] |
Nielsen C. Animal Evolution: Interrelationships of the Living Phyla, 2012 Oxford: Oxford University Press, 402.
|
| [49] |
Papineau D. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 2010, 10: 165-181.
|
| [50] |
Partin C. A., Bekker A., Planavsky N. J., . Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letter, 2013, 369–370: 284-293.
|
| [51] |
Petsch S. T. The Global Oxygen Cycle. Biogeochemistry. Treatise on Geochemistry, 2004, 8: 515-555.
|
| [52] |
Planavsky N. J., Rouxel O. J., Bekker A., . The Evolution of the Marine Phosphate Reservoir. Nature, 2010, 467: 1088-1090.
|
| [53] |
Rhoads D. C., Morse J. W. Evolutionary and Ecological Significance of Oxygen-Deficient Marine Basins. Lethaia, 1971, 4: 413-428.
|
| [54] |
Rogers J. J. W., Santosh M. Continents and Supercontinents, 2004 Oxford: Oxford University Press, 289.
|
| [55] |
Rosenberg R. Benthic Faunal Recovery in a Swedish Fjord Following the Closure of a Sulphite Pulp Mill. Oikos, 1972, 23: 92-108.
|
| [56] |
Runnegar B. Oxygen Requirements, Biology and Phylogenetic Significance of the Late Precambrian Worm Dickinsonia, and the Evolution of the Burrowing Habit. Alcheringa, 1982, 6: 223-239.
|
| [57] |
Runnegar B. Precambrian Oxygen Levels Estimated from the Biochemistry and Physiology of Early Eukaryotes. Global and Planetary Change, 1991, 97: 97-111.
|
| [58] |
Shu D. G., Luo H. L. C., Morris S., . Lower Cambrian Vertebrates from South China. Nature, 1999, 402: 42-46.
|
| [59] |
Shu D. G., Isozaki Y., Zhang X. L., . Birth and Early Evolution of Metazoans. Gondwana Research, 2014, 25: 884-895.
|
| [60] |
Skovsted C. B., Peel J. S. Hyolithellus in life position from the Lower Cambrian of North Greenland. Journal of Paleontology, 2011, 85: 37-47.
|
| [61] |
Sperling E. A., Frieder C. A., Raman A. V. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 13446-13451.
|
| [62] |
Sperling E. A., Halverson G. P., Knoll A. H., . A Basin Redox Transect at the Dawn of Animal Life. Earth and Planetary Science Letter, 2013, 371–372: 143-155.
|
| [63] |
Wang J. G., Chen D. Z., Yan D. T., . Evolution from An Anoxic to Oxic Deep Ocean during the Ediacaran–Cambrian Transition and Implications for Bioradiation. Chemical Geology, 2012, 306: 129-138.
|
| [64] |
Wang H., Li C., Hu C., . Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 2015, 26(6): 883-892.
|
| [65] |
Wen H. J., Carignan J., Chu X. L., . Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian. Chemical Geology, 2014, 390: 164-172.
|
| [66] |
Wang Y., Wang X. L., Wang Y. Cambrian Ichnofossils from the Zhoujieshan Formation (Quanji Group) Overlying Tillites in the Northern Margin of the Qaidam Basin, NW China. Journal of Earth Science, 2015, 26(2): 203-210.
|
| [67] |
Wray G. A. Molecular Clocks and the Early Evolution of Metazoan Nervous Systems. Philosophical Transactions of the Royal Society Series B, 2015, 370(150046): 1-11.
|
| [68] |
Yang B., Steiner M., Li G. X., . Terreneuvian Small Shelly Faunas of East Yunnan (South China) and Their Biostratigraphic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 28-58.
|
| [69] |
Yin Z. J., Zhu M. Y., Davidson E. H., . Sponge Grade Body Fossil with Cellular Resolution Dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: E1453-1460.
|
| [70] |
Zhang X. L., Shu D. G. Causes and Consequences of the Cambrian Explosion. Science China—Earth Sciences, 2014, 57: 930-942.
|
| [71] |
Zhang X., Shu D., Han J., . Triggers for the Cambrian Explosion: Hypotheses and Problems. Gondwana Research, 2014, 25: 896-909.
|