Oxygen requirements for the Cambrian explosion

Xingliang Zhang, Linhao Cui

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 187-195.

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 187-195. DOI: 10.1007/s12583-016-0690-8
Article

Oxygen requirements for the Cambrian explosion

Author information +
History +

Abstract

Hypoxic tolerance experiments may be helpful to constrain the oxygen requirement for animal evolution. Based on literature review, available data demonstrate that fishes are more sensitive to hypoxia than crustaceans and echinoderms, which in turn are more sensitive than annelids, whilst mollusks are the least sensitive. Mortalities occur where O2 concentrations are below 2.0 mg/L, equivalent to saturation with oxygen content about 25% PAL (present atmospheric level). Therefore, the minimal oxygen requirement for maintaining animal diversity since Cambrian is determined as 25% PAL. The traditional view is that a rise in atmospheric oxygen concentrations led to the oxygenation of the ocean, thus triggering the evolution of animals. Geological and geochemical studies suggest a constant increase of the oxygen level and a contraction of anoxic oceans during Ediacaran–Cambrian transition when the world oceans experienced a rapid diversification of metazoan lineages. However, fossil first appearances of animal phyla are obviously asynchronous and episodic, showing a sequence as: basal metazoans>lophotrochozoans>ecdysozoans and deuterostomes. According to hitherto known data of fossil record and hypoxic sensitivity of animals, the appearance sequence of different animals is broadly consistent with their hypoxic sensitivity: animals like molluscs and annelids that are less sensitive to hypoxia appeared earlier, while animals like echinoderms and fishes that are more sensitive to hypoxia came later. Therefore, it is very likely that the appearance order of animals is corresponding to the increasing oxygen level and/or the contraction of anoxic oceans during Ediacaran–Cambrian transition.

Keywords

oxygenation / Cambrian explosion / metazoan lineages / divergence / fossil first appearance

Cite this article

Download citation ▾
Xingliang Zhang, Linhao Cui. Oxygen requirements for the Cambrian explosion. Journal of Earth Science, 2016, 27(2): 187‒195 https://doi.org/10.1007/s12583-016-0690-8

References

Antcliffe J. B., Callow R. H. T., Brasier M. D. Giving the Early Fossil Record of Sponges A Squeeze. Biological Reviews, 2014, 89: 972-1004.
CrossRef Google scholar
Berkner L. V., Marshall L. C. On the Origin and Rise of Oxygen Concentration in the Earth’s Atmosphere. Journal of Atmospheric Sciences, 1965, 22: 225-261.
CrossRef Google scholar
Blair J. E. Hedges S. B., Kumar S. Animals (Metazoa). The Timetree of Life, 2009 Oxford: Oxford University Press, 223-230.
Braddy S. J., Poschmann M., Tetlie O. E. Giant Claw Reveals the Largest Ever Arthropod. Biology Letter, 2008, 4: 106-109.
CrossRef Google scholar
Butterfield N. J. Oxygen, Animals and Oceanic Ventilation: An Alternative View. Geobiology, 2009, 7: 1-7.
CrossRef Google scholar
Campbell I. H., Allen C. M. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 2008, 1: 554-558.
CrossRef Google scholar
Campbell I. H., Squire R. J. The Mountains that Triggered the Late Neoproterozoic Increase in Oxygen: the Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 2010, 74: 4187-4206.
CrossRef Google scholar
Canfield D. E. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Science, 2005, 33: 1-36.
CrossRef Google scholar
Canfield D. E., Poulton S. W., Narbonne G. M. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 2007, 315: 92-95.
CrossRef Google scholar
Catling D. C., Glein C. R., Zahnle K. J., . Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary “Oxygenation Time”. Astrobiology, 2005, 5: 415-438.
CrossRef Google scholar
Chen X., Ling H. F., Vance D., . Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 2015, 6 7142
CrossRef Google scholar
Cloud P. E. Jr. Some Problems and Patterns of Evolution Exemplified by Fossil Invertebrates. Evolution, 1948, 2: 322-350.
CrossRef Google scholar
Cloud P. E. Beginnings of Biospheric Evolution and Their Biogeochemical Consequences. Paleobiology, 1976, 2: 351-387.
Conway M. S., Peel J. S. The Earliest Annelids: Lower Cambrian Polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontologica Polonica, 2008, 53: 137-148.
CrossRef Google scholar
Danovaro R., Dell’Anno A., Pusceddu A., Gambi C., Heiner I., Kristensen R.M. The First Metazoa Living in Permanently Anoxic Conditions. BMC Biology, 2010, 8 30
CrossRef Google scholar
Decker H., van Holde K. E. Oxygen and the Evolution of Life, 2011 Berlin: Springer, 172
CrossRef Google scholar
Diaz R. J., Rosenberg R. Marine Benthic Hypoxia: A Review of Its Ecological Effects and the Behavioural Responses of Benthic Macrofauna. Oceanography and Marine Biology: An Annual Review, 1995, 33: 245-303.
Dries R. R., Theede H. Sauerstoffmangelresistenz Mariner Bodenvertebraten aus der Westlichen Ostsee. Marine Biology, 1974, 25: 327-333.
CrossRef Google scholar
Erwin D. H., Laflamme M., Tweedt S. M., . The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 2011, 334: 1901-1907.
CrossRef Google scholar
Erwin D. H., Tweedt S. Ecological Drivers of the Ediacaran-Cambrian Diversification of Metazoa. Evolutionary Ecology, 2012, 26: 417-433.
CrossRef Google scholar
Erwin D. H., Valentine J. W. The Cambrian Explosion: the Construction of Animal Biodiversity, 2013 Greenwood Village: Roberts and Company Publishers, Inc., 406.
Fedonkin M. A., Waggoner B. M. The Late Precambrian Fossil Kimberella Is a Mollusc-Like Bilaterian Organism. Nature, 1997, 388: 868-871.
CrossRef Google scholar
Feng L. J., Li C., Huang J., . A sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 2014, 246: 123-133.
Gray J. S., Wu R. S., Or Y. Y. Effects of Hypoxia and Organic Enrichment on the Coastal Marine Environment. Marine Ecology Progress Series, 2002, 238: 249-270.
CrossRef Google scholar
Henriksson R. Influence of Pollution on the Bottom Fauna of the Sound (Öresund). Oikos, 1969, 20: 507-523.
CrossRef Google scholar
Hua H., Chen Z., Yuan X. L., . Skeletogenesis and Asexual Reproduction in the Earliest Biomineralizing Animal Cloudina. Geology, 2005, 33: 277-280.
CrossRef Google scholar
Jin C. S., Li C., Peng X. F., . Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China: Earth Science, 2014, 57: 579-591.
CrossRef Google scholar
Kasting J. F. Earth’s Early Atmosphere. Science, 1993, 259: 920-926.
CrossRef Google scholar
Kendall B., Anbar A. D., Kappler A., . Knoll A. H., Canfield D. E., Konhauser K. O., . The Global Iron Cycle. Fundamentals of Geobiology, 2012 Oxford: Wiley-Blackewll, 65-92.
CrossRef Google scholar
Knoll A. H., Sperling E. A. Oxygen and Animals in Earth History. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 3907-3908.
CrossRef Google scholar
Knoll A.H., Carroll S.B. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 1999, 284: 2129-2137.
CrossRef Google scholar
Knoll A. H., Walter M. R. Latest Proterozoic Stratigraphy and Earth History. Nature, 1992, 356: 673-678.
CrossRef Google scholar
Kouchinsky A., Bengtson S., Clausen S., . A Lower Cambrian Fauna of Skeletal Fossils from the Emyaksin Formation, Northern Siberia. Acta Palaeontologica Polonica, 2015
Kouchinsky A., Bengtson S., Runnegar B., . Chronology of Early Cambrian Biomineralization. Geological Magazine, 2012, 149: 221-251.
CrossRef Google scholar
Kump L. R. The Rise of Atmospheric Oxygen. Nature, 2008, 451: 277-278.
CrossRef Google scholar
Landing E., Geyer G., Brasier M. D., . Cambrian Evolutionary Radiation: Context, Correlation, and Chronostratigraphy—Overcoming Deficiencies of the First Appearance Datum (FAD) Concept. Earth-Science Reviews, 2013, 123: 133-172.
CrossRef Google scholar
Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328: 80-83.
CrossRef Google scholar
Li Z. X., Powell C. M. An Outline of the Palaeongeographic Evolution of the Australasian Region since the Beginning of the Neoproterozoic. Earth-Science Review, 2001, 53: 237-277.
CrossRef Google scholar
Ling H. F., Chen X., Li D., . Cerium Anomaly Variations in Ediacaran–Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater. Precambrian Research, 2013, 225: 110-127.
CrossRef Google scholar
Love G. D., Grosjean E., Fike D. A., . Fossil Steroid Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 2009, 457: 718-721.
CrossRef Google scholar
Lyons T. W., Reinhard C. T., Love G. D., . Knoll A. H., Canfield D. E., Konhauser K. O., . Geobiology of the Proterozoic Eon. Fundamentals of Geobiology, 2012 Oxford: Wiley-Blackewll, 371-402.
CrossRef Google scholar
Mángano M. G., Buatois L. A. Decoupling of Body-Plan Diversification and Ecological Structuring during the Ediacaran–Cambrian Transition: Evolutionary and Geobiological Feedbacks. Proceedings of the Royal Society B, 2014, 281 20140038
CrossRef Google scholar
Meert J. G. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Special Publication 206, Eos, Transactions American Geophysical Union, 2003, 84 372
CrossRef Google scholar
Meert J. G. Reitner J., Thiel V. Gondwanaland, Formation. Encyclopedia of Geobiology, 2011 Berlin: Springer, 434-436.
CrossRef Google scholar
Mentel M., Martin W. Anaerobic Animals from an Ancient, Anoxic Ecological Niche. BMC Biology, 2010, 8 32
CrossRef Google scholar
Miller D. C., Poucher S.L., Coiro L., . McElroy A., Zeidner J., . Effects of Hypoxia on Growth and Survival of Crustaceans and Fishes of Long Island Sound. Proceedings of the Long Island Sound Research Conference: Is the Sound Getting Better or Worse, 1995 Stony Brook, NY: New York Sea Grant Institute, p1-92.
Mills D. B., Ward L. M., Jones C. A., . Oxygen Requirements of the Earliest Animals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 4168-4172.
CrossRef Google scholar
Nielsen C. Animal Evolution: Interrelationships of the Living Phyla, 2012 Oxford: Oxford University Press, 402.
Papineau D. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 2010, 10: 165-181.
CrossRef Google scholar
Partin C. A., Bekker A., Planavsky N. J., . Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letter, 2013, 369–370: 284-293.
CrossRef Google scholar
Petsch S. T. The Global Oxygen Cycle. Biogeochemistry. Treatise on Geochemistry, 2004, 8: 515-555.
Planavsky N. J., Rouxel O. J., Bekker A., . The Evolution of the Marine Phosphate Reservoir. Nature, 2010, 467: 1088-1090.
CrossRef Google scholar
Rhoads D. C., Morse J. W. Evolutionary and Ecological Significance of Oxygen-Deficient Marine Basins. Lethaia, 1971, 4: 413-428.
CrossRef Google scholar
Rogers J. J. W., Santosh M. Continents and Supercontinents, 2004 Oxford: Oxford University Press, 289.
Rosenberg R. Benthic Faunal Recovery in a Swedish Fjord Following the Closure of a Sulphite Pulp Mill. Oikos, 1972, 23: 92-108.
CrossRef Google scholar
Runnegar B. Oxygen Requirements, Biology and Phylogenetic Significance of the Late Precambrian Worm Dickinsonia, and the Evolution of the Burrowing Habit. Alcheringa, 1982, 6: 223-239.
CrossRef Google scholar
Runnegar B. Precambrian Oxygen Levels Estimated from the Biochemistry and Physiology of Early Eukaryotes. Global and Planetary Change, 1991, 97: 97-111.
CrossRef Google scholar
Shu D. G., Luo H. L. C., Morris S., . Lower Cambrian Vertebrates from South China. Nature, 1999, 402: 42-46.
CrossRef Google scholar
Shu D. G., Isozaki Y., Zhang X. L., . Birth and Early Evolution of Metazoans. Gondwana Research, 2014, 25: 884-895.
CrossRef Google scholar
Skovsted C. B., Peel J. S. Hyolithellus in life position from the Lower Cambrian of North Greenland. Journal of Paleontology, 2011, 85: 37-47.
CrossRef Google scholar
Sperling E. A., Frieder C. A., Raman A. V. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 13446-13451.
CrossRef Google scholar
Sperling E. A., Halverson G. P., Knoll A. H., . A Basin Redox Transect at the Dawn of Animal Life. Earth and Planetary Science Letter, 2013, 371–372: 143-155.
CrossRef Google scholar
Wang J. G., Chen D. Z., Yan D. T., . Evolution from An Anoxic to Oxic Deep Ocean during the Ediacaran–Cambrian Transition and Implications for Bioradiation. Chemical Geology, 2012, 306: 129-138.
CrossRef Google scholar
Wang H., Li C., Hu C., . Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 2015, 26(6): 883-892.
Wen H. J., Carignan J., Chu X. L., . Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian. Chemical Geology, 2014, 390: 164-172.
CrossRef Google scholar
Wang Y., Wang X. L., Wang Y. Cambrian Ichnofossils from the Zhoujieshan Formation (Quanji Group) Overlying Tillites in the Northern Margin of the Qaidam Basin, NW China. Journal of Earth Science, 2015, 26(2): 203-210.
CrossRef Google scholar
Wray G. A. Molecular Clocks and the Early Evolution of Metazoan Nervous Systems. Philosophical Transactions of the Royal Society Series B, 2015, 370(150046): 1-11.
Yang B., Steiner M., Li G. X., . Terreneuvian Small Shelly Faunas of East Yunnan (South China) and Their Biostratigraphic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 28-58.
CrossRef Google scholar
Yin Z. J., Zhu M. Y., Davidson E. H., . Sponge Grade Body Fossil with Cellular Resolution Dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: E1453-1460.
Zhang X. L., Shu D. G. Causes and Consequences of the Cambrian Explosion. Science China—Earth Sciences, 2014, 57: 930-942.
Zhang X., Shu D., Han J., . Triggers for the Cambrian Explosion: Hypotheses and Problems. Gondwana Research, 2014, 25: 896-909.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/