Sulfur and oxygen isotopes of sulfate extracted from Early Cambrian phosphorite nodules: Implications for marine redox evolution in the Yangtze Platform

Wenlang Qiao , Xianguo Lang , Yongbo Peng , Kaiyuan Jiang , Wu Chen , Kangjun Huang , Bing Shen

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 170 -179.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 170 -179. DOI: 10.1007/s12583-016-0688-2
Article

Sulfur and oxygen isotopes of sulfate extracted from Early Cambrian phosphorite nodules: Implications for marine redox evolution in the Yangtze Platform

Author information +
History +
PDF

Abstract

Phosphorite nodule beds are discovered in the black shale of basal Niutitang Formation throughout the Yangtze Platform in South China, recording an important phosphorite-generation event. Platform-wide phosphorite precipitation requires special oceanographic and geochemical conditions, thus the origin of the Niutitang phosphorite nodules may provide valuable information about the ocean chemistry in the Early Cambrian. In this study, we measured sulfur and oxygen isotopic compositions of sulfate extracted from phosphorite nodules collected from the basal Niutitang Formation. Phosphorite associated sulfate (PAS) is a trace amount of sulfate that incorporates into crystal lattice during phosphorite precipitation, accordingly PAS records the geochemical signals during phosphorite nodule formation. Sulfur isotopic composition of PAS (δ34SPAS) ranges from -1.16‰ to +24.48‰ (mean=+8.19‰, n=11), and oxygen isotopic value (δ18OPAS) varies between -5.3‰ and +26.3‰ (mean=+7.0‰, n=8). Most phosphorite nodules have low δ34SPAS and low δ18OPAS values, suggesting PAS mainly derived from anaerobic oxidation of H2S within suboxic sediment porewater. We propose that phosphate was delivered to the Yangtze Platform by a series of upwelling events, and was scavenged from seawater with the precipitation of FeOOH. The absorbed phosphate was released into suboxic porewater by the reduction of FeOOH at the oxic-suboxic redox boundary in sediments, and phosphorite nodule precipitated by the reaction of phosphate with Ca2+ diffused from the overlying seawater. The platform-wide deposition of phosphorite nodules in the basal Niutitang Formation implies the bottom water might be suboxic or even oxic, at least sporadically, in Early Cambrian. We speculate that the intensified ocean circulation as evident with frequent occurrences of upwelling events might be the primary reason for the episodic oxidation of the Yangtze Platform in Early Cambrian.

Keywords

phosphorite nodules / Niutitang Formation / phosphorite associated sulfate / sulfur isotope / oxygen isotope

Cite this article

Download citation ▾
Wenlang Qiao, Xianguo Lang, Yongbo Peng, Kaiyuan Jiang, Wu Chen, Kangjun Huang, Bing Shen. Sulfur and oxygen isotopes of sulfate extracted from Early Cambrian phosphorite nodules: Implications for marine redox evolution in the Yangtze Platform. Journal of Earth Science, 2016, 27(2): 170-179 DOI:10.1007/s12583-016-0688-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antler G., Turchyn A. V., Rennie V., . Coupled Sulfur and Oxygen Isotope Insight into Bacterial Sulfate Reduction in the Natural Environment. Geochimica et Cosmochimica Acta, 2013, 118(0): 98-117.

[2]

Böttcher M. E., Thamdrup B. Anaerobic Sulfide Oxidation and Stable Isotope Fractionation Associated with Bacterial Sulfur Disproportionation in the Presence of MnO2. Geochimica et Cosmochimica Acta, 2001, 65(10): 1573-1581.

[3]

Balci N. S., Iii W. C., Mayer B., . Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 2007, 71(15): 3796-3811.

[4]

Bao H. Purifying Barite for Oxygen Isotope Measurement by Dissolution and Reprecipitation in a Chelating Solution. Analytical Chemistry, 2006, 78(1): 304-309.

[5]

Bao Z. X., Wan R. J., Bao J. M. Vanadium Deposits of Black Shale in Upper Yangtze Platform. Yunnan Geology, 2002, 21: 175-182.

[6]

Bohlke J. K., Mroczkowski S. J., Coplen T. B. Oxygen isotopes In Nitrate: New Reference Materials for O-18: O-17: O-16 Measurements and Observations on Nitrate-Water Equilibration. Rapid Communications in Mass Spectrometry, 2003, 17: 1835-1846.

[7]

Brand W. A., Coplen T. B., Aerts-Bijma A. T., . Comprehensive inter-Laboratory Calibration of Reference Materials for Delta O-18 versus VSMOW Using Various On-Line High-Temperature Conversion Techniques. Rapid Communications in Mass Spectrometry, 2009, 23: 999-1019.

[8]

Brimblecombe P., Heinrich D. H., Karl K. T. The Global Sulfur Cycle, 2003 Treatise on Geochemistry, Pergamon: Oxford, 645-682.

[9]

Bruland K. W., Lohan M. C. Controls of Trace Metals in Seawater. Treatise on Geochemistry, Elsevier, 2003, 6: 23-47.

[10]

Brunner B., Bernascon S. M. A Revised Isotope Fractionation Model for Dissimilatory Sulfate Reduction in Sulfate Reducing Bacteria. Geochimica et Cosmochimica Acta, 2005, 69(20): 4759-4771.

[11]

Brunner B., Bernasconi S. M., Kleikemper J., . A Model for Oxygen and Sulfur Isotope Fractionation in Sulfate during Bacterial Sulfate Reduction Processes. Geochimica et Cosmochimica Acta, 2005, 69(20): 4773-4785.

[12]

Canfield D. E. The Evolution of the Earth Surface Sulfur Reservoir. Am. J. Sci., 2004, 304: 839-861.

[13]

Canfield D. E., Farquhar J. Animal Evolution, Bioturbation, and the Sulfate Concentration of the Oceans. Proceedings of the National Academy of Sciences, 2009, 106(20): 8123-8127.

[14]

Chen D., Zhou X., Fu Y., . New U–Pb Zircon Ages of the Ediacaran–Cambrian Boundary Strata in South China. Terra Nova, 2015, 27(1): 62-68.

[15]

Cheng M., Hu X., Sun J., . Overview on the Cambrian Black Shale-Hosted Vanadium Deposit in Hunan. Contributions to Geology and Mineral Resources Research, 2012, 27: 410-420.

[16]

Farquhar J., Canfield D. E., Masterson A., . Sulfur and Oxygen Isotope Study of Sulfate Reduction in Experiments with Natural Populations from Fællestrand, Denmark. Geochimica et Cosmochimica Acta, 2008, 72(12): 2805-2821.

[17]

Feng D., Roberts H. H. Geochemical Characteristics of the Barite Deposits at Cold Seeps from the Northern Gulf of Mexico Continental Slope. Earth and Planetary Science Letters, 2011, 309(1–2): 89-99.

[18]

Feng L., Li C., Huang J., . A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (Ca. 529–521 Ma) Yangtze Platform, South China. Precambrian Research, 2014, 246(0): 123-133.

[19]

Fike D. A., Grotzinger J. P., Pratt L. M., . Oxidation of the Ediacaran Ocean. Nature, 2006, 444: 744-747.

[20]

Foellmi K. B. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth Science Reviews, 1996, 40: 55-124.

[21]

Fry B., Ruf W., Gest H., . Sulfur Isotope Effects Associated with Oxidation of Sulfide by O2 in Aqueous Solution. Chemical Geology: Isotope Geoscience section, 1988, 73(3): 205-210.

[22]

Journal of Earth Science, 2016, 27 2

[23]

Gill B. C., Lyons T. W., Young S. A., . Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 2011, 469(7328): 80-83.

[24]

Glenn C. R., Follmi K. B., Riggs S. R., . Phosphorus and Phosphorites: Sedimentology and Environments of Formation. Eclogae Geologicae Helvetiae, 1994, 87: 747-788.

[25]

Goldberg T., Poulton S. W., Strauss H. Sulphur and Oxygen Isotope Signatures of Late Neoproterozoic to Early Cambrian Sulphate, Yangtze Platform, China: Diagenetic Constraints and Seawater Evolution. Precambrian Research, 2005, 137: 223-241.

[26]

Grotzinger J. P., Fike D. A., Fischer W. W. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth's History. Nature Geosci, 2011, 4(5): 285-292.

[27]

Guo Q., Strauss H., Zhao Y., . Reconstructing Marine Redox Conditions for the Transition between Cambrian Series 2 and Cambrian Series 3, Kaili Area, Yangtze Platform: Evidence from Biogenic Sulfur and Degree of Pyritization. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398(0): 144-153.

[28]

Habicht K. S., Canfield D. E. Sulfur Isotope Fractionation during Bacterial Sulfate Reduction in Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 1997, 61: 5351-5361.

[29]

Hu J., Xiao S., Yuan X. Articulated Sponges from the Early Cambrian Hetang Formation in South China. GSA Annual Meeting Abstracts with Programs, 2002, 34 425.

[30]

Hubert C., Voordouw G., Mayer B. Elucidating Microbial Processes in Nitrate- and Sulfate-Reducing Systems Using Sulfur and Oxygen Isotope Ratios: the Example of Oil Reservoir Souring Control. Geochimica et Cosmochimica Acta, 2009, 73(13): 3864-3879.

[31]

Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38 2

[32]

Jiang S. Y., Yang J. H., Ling H. F., . Extreme Enrichment of Polymetallic Ni–Mo–PGE–Au in Lower Cambrian Black Shales of South China: An Os Isotope and PGE Geochemical Investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1–2): 217-228.

[33]

Jiang S. Y., Zhao H. X., Chen Y. Q., . Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 2007, 244(3–4): 584-604.

[34]

Jiang S. Y., Zhao K. D., Li L., . Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater: Comment and Reply: Comment. Geology, 2007, 35(1): e158-e159.

[35]

Jiang S. Y., Pi D. H., Heubeck C., . Early Cambrian Ocean Anoxia in South China. Nature, 2009, 459(7248): E5-E6.

[36]

Jiang S., Yang J., Ling H., . Re-Os Isotopes and PGE Geochemistry of Black Shales and Intercalated Ni-Mo Polymetallic Sulfide Bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 2003, 13: 788-794.

[37]

Jin C., Li C., Peng X., . Spatiotemporal Variability of Ocean Chemistry in the Early Cambrian, South China. Science China Earth Sciences, 2014, 57(4): 579-591.

[38]

Lehmann B., Nägler T. F., Holland H. D., . Highly Metalliferous Carbonaceous Shale and Early Cambrian Seawater. Geology, 2007, 35: 403-406.

[39]

Li C., Cheng M., Algeo T., . A Theoretical Prediction of Chemical Zonation in Early Oceans (520 Ma). Science China Earth Sciences, 2015, 58(11): 1901-1909.

[40]

Luther G. W., Findlay A. J., MacDonald D. J., . Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment. Frontiers in Microbiology, 2011, 2.

[41]

Marenco P. J., Corsetti F. A., Hammond D. E., . Oxidation of Pyrite during Extraction of Carbonate Associated Sulfate. Chemical Geology, 2008, 247: 124-132.

[42]

Marshall C. R. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 2006, 34: 355-384.

[43]

Mazumdar A., Goldberg T., Strauss H. Abiotic Oxidation of Pyrite by Fe(III) in Acidic Media and its Implications for Sulfur Isotope Measurements of Lattice-Bound Sulfate in Sediments. Chemical Geology, 2008, 253(1–2): 30-37.

[44]

McFadden K. A., Huang J., Chu X., . Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 2008, 105: 3197-3202.

[45]

Moses C. O. K., Nordstrom D., Herman J. S., . Aqueous Pyrite Oxidation by Dissolved Oxygen and by Ferric Iron. Geochimica et Cosmochimica Acta, 1987, 51(6): 1561-1571.

[46]

Moses C. O., Herman J. S. Pyrite Oxidation at Circumneutral pH. Geochimica et Cosmochimica Acta, 1991, 55(2): 471-482.

[47]

Och L. M. S., Zhou G. A. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 2012, 110(1–4): 26-57.

[48]

Och L. M. S., Zhou G. A., Poulton S. W., . Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 2013, 225: 166-189.

[49]

Orberger B., Vymazalova A., Wagner C., . Origin of MoSC Phases in Lower Cambrian Black Shales (Southern China). Geochimica et Cosmochimica Acta, 2006, 70 18 A462

[50]

Peng Y., Bao H., Pratt L. M., . Widespread Contamination of Carbonate-Associated Sulfate by Present-Day Secondary Atmospheric Sulfate: Evidence from Triple Oxygen Isotopes. Geology, 2014, 42(9): 815-818.

[51]

Pi D. H., Liu C. Q. S., Zhou G. A., . Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 2013, 225: 218-229.

[52]

Rasmussen B., Buick R., Taylor W. R. Removal of Oceanic REE by Authigenic Precipitation of Phosphatic Minerals. Earth and Planetary Science Letters, 1998, 164(1–2): 135-149.

[53]

Rickard D. Kinetics Of Pyrite Formation by the H2S Oxidation of Iron (II) Monosulfide in Aqueous Solutions Between 25 And 125 °C: The Rate Equation. Geochimica et Cosmochimica Acta, 1997, 61(1): 115-134.

[54]

Ruttenberg K. C., Heinrich D. H., Karl K. T. The Global Phosphorus Cycle. Treatise on Geochemistry, 2003 Pergamon: Oxford, 585-643.

[55]

Schippers A., Jørgensen B. B. Oxidation of Pyrite and Iron Sulfide by Manganese Dioxide in Marine Sediments. Geochimica et Cosmochimica Acta, 2001, 65(6): 915-922.

[56]

Shields G., Kimura H., Yang J., . Sulphur Isotopic Evolution of Neoproterozoic-Cambrian Seawater: New Francolite-Bound Sulphate D34s Data and a Critical Appraisal of the Existing Record. Chemical Geology, 2004, 204: 163-182.

[57]

Shu D. Cambrian explosion: Birth of Tree of Animals. Gondwana Research, 2008, 14(1–2): 219-240.

[58]

Sperling E. A., Wolock C. J., Morgan A. S., . Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 2015, 523(7561): 451-454.

[59]

Su D. Y., Wu Z. C., Zhang M. Q., . Geological Characteristics and Metallogenic Prediction of Vanadium Deposit in Northeast Guizhou. Guizhou Geology, 2012, 29: 173-182.

[60]

Tarhan L. G., Droser M. L. Widespread Delayed Mixing in Early to Middle Cambrian Marine Shelfal Settings. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399(0): 310-322.

[61]

Van Stempvoort D. R., Krouse H. R. Alpers C. N., Blowes D. W. Controls of Sulfate d18O: A General Model and Application to Specific Environments. Environmental Geochemistry of Sulfide Oxidation, 1994 Washington, D.C.: American Chemical Society, 446-480.

[62]

Wang J., Chen D., Yan D., . Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran–Cambrian Transition and Implications for Bioradiation. Chemical Geology, 2012, 306–307: 129-138.

[63]

Wang X., Shi X., Jiang G., . New U–Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran–Cambrian Transition. Journal of Asian Earth Sciences, 2012, 48(0): 1-8.

[64]

Xiao S., Hu J., Yuan X., . Articulated Sponges from the Lower Cambrian Hetang Formation in Southern Anhui, South China: Their Age and Implications for the Early Evolution of Sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(1–2): 89-117.

[65]

Xu L., Lehmann B., Mao J., . Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China—A Reassessment. Economic Geology, 2011, 106(3): 511-522.

[66]

Xu L., Lehmann B., Mao J. Seawater Contribution to Polymetallic Ni–Mo–PGE–Au Mineralization in Early Cambrian Black Shales of South China: Evidence from Mo Isotope, PGE, Trace Element, and REE Geochemistry. Ore Geology Reviews, 2013, 52: 66-84.

[67]

Yang J. H., Jiang S. Y., Ling H. F., . Paleoceangraphic Significance of Redox-Sensitive Metals of Black Shales in the Basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science, 2004, 14: 152-157.

[68]

Yang R., Zhu L., Gao H., . A Study on Charateristics of the Hydrothermal Vent and Relating Biota at the Cambrian Bottom in Songlin, Zunyi County, Guizhou Province. Geological Review, 2005, 51: 481-492.

[69]

Yuan X., Xiao S., Parsley R. L., . Towering Sponges in an Early Cambrian Lagerstätte: Disparity Between Non-Bilaterian and Bilaterian Epifaunal Tiers during the Neoproterozoic-Cambrian Transition. Geology, 2002, 30(4): 363-366.

[70]

Zhou C., Jiang S. Y. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3–4): 279-286.

[71]

Zhu B., Jiang S. Y., Yang J. H., . Rare Earth Element and Sr-Nd Isotope Geochemistry of Phosphate Nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398(0): 132-143.

[72]

Zhu M. Y., Zhang J. M., Steiner M., . Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 2003, 13: 351-960.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/