Petrology and geochemistry of diabasic dikes and andesitic-basaltic lavas in Noorabad-Harsin ophiolite, SE of Kermanshah, Iran

Zahra Tahmasbi , Masoud Kiani , Ahmad Ahmadi Khalaji

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 935 -944.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 935 -944. DOI: 10.1007/s12583-016-0686-4
Special Column on Tectonics of Turkey and Iran and Comparison with Other Tethyan Domains

Petrology and geochemistry of diabasic dikes and andesitic-basaltic lavas in Noorabad-Harsin ophiolite, SE of Kermanshah, Iran

Author information +
History +
PDF

Abstract

The Noorabad-Harsin ophiolite is a part of the eastern Mediterranean-Zagros-Oman Tethyan ophiolites. This area is located in the south-southwest of the main Zagros thrust zone. This ophiolite consists of peridotites, serpentinites and pegmatite gabbros as mantle sequence whereas crustal sequence is composed of locally layered gabbros, isotropic gabbros, sheeted dike complex, basaltic to andesitic lavas and sedimentary rocks (radiolarites and Late Cretaceous pelagic limestones). The diabase dikes are enriched in LREE relative to HREE (La(n)/Yb(n)=1.7–3.3). Also, the andesites are enriched in LREE relative to HREE (La(n)/Yb(n)=3.1–5.37) and the pillow lavas are enriched in LILE (Th(n)/La(n)=2.1) while show a depletion in HFSE (Nb(n)/La(n)=0.07–0.2). The basaltic-andesitic lavas exhibiting mainly calc-alkaline, with minor island-arc tholeiitic affinities, are characterized by enrichment in LILE and LREE and depletion in HFSE. These geochemical characteristics compared with other Tethyan ophiolites along the Bitlis-Zagros suture zone reveal a suprasubduction zone environment for the genesis of the Noorabad-Harsin ophiolites.

Keywords

diabasic dike / basaltic-andesitic lava / geochemistry / supra-subduction zone / Noorabad-Harsin ophiolite

Cite this article

Download citation ▾
Zahra Tahmasbi, Masoud Kiani, Ahmad Ahmadi Khalaji. Petrology and geochemistry of diabasic dikes and andesitic-basaltic lavas in Noorabad-Harsin ophiolite, SE of Kermanshah, Iran. Journal of Earth Science, 2016, 27(6): 935-944 DOI:10.1007/s12583-016-0686-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agard P., Omrani J., Jolivet L., . Convergence History across Zagros (Iran): Constraints from Collisional and Earlier Deformation. International Journal of Earth Sciences, 2005, 94(3): 401-419.

[2]

Aghanabati A. Geological Maps of Kermanshah Quadrangle, Scale, 1: 250 000, 1978

[3]

Aghanabati A. Explanatory Text of the Bakhtran Quadrangle Map 1: 250 000, 1990

[4]

Khalaji A., Esmaeily D., Valizadeh M. V., . Petrology and Geochemistry of the Granitoid Complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 2007, 29(5–6): 859-877.

[5]

Alavi M. Tectonic Map of the Middle East, 1991

[6]

Allahyari K., Saccan E., Pourmoafi M., . Petrology of Mantle Peridotites and Intrusive Mafic Rocks from the Kermanshah Ophiolitic Complex (Zagros Belt, Iran): Implications for the Geodynamic Evolution of the Neo-Tethyan Oceanic Branch between Arabia and Iran. Ofioliti, 2010, 35(2): 71-90.

[7]

Ao S., Xiao W., Khalatbari-Jafari M., . U-Pb Zircon Ages, Field Geology and Geochemistry of the Kermanshah Ophiolite (Iran): From Continental Rifting at 79 Ma to Oceanic Core Complex at ca. 36 Ma in the Southern Neo-Tethys. Gondwana Research, 2015, 31: 305-318.

[8]

Arvin M., . Malpas J., Moores E. M., Panayiotou A., . Petrology and Geochemistry of Ophiolites and Associated Rocks from the Zagros Suture, Neyriz, Iran. Ophiolites, Oceanic Crustal Analogues. Proceedings of the Symposium “Troodos 1987”. Geological Survey Department, Nicosia, Cyprus, 1990, 351-365.

[9]

Braud J. Geological Map of Kermanshah, 1: 250 000: Geological Survey of Iran, 1978

[10]

Braud J. The Zagros Formations in the Region of Kermanshah. Bulletin of Sociology Geology, France, 1970, XIII(3–4): 416-419.

[11]

Cabanis B., Lecolle M. The La/10-Y/15Nb/8 Diagram: A Tool for Distinguishing Volcanic Series and Discovering Crustal Mixing and/or Contamination. Comptes Rendus de l'Académie des Sciences––Series, 1989, 2023-2029.

[12]

Delaloye M., Desmons J. Ophiolites and Mélange Terranes in Iran: A Geochronological Study and Its Paleotectonic Implications. Tectonophysics, 1980, 68: 83-111.

[13]

Dercourt J., Ricou L. E., Vrielynck B. Atlas Tethys Paleoenvironmental Maps, 1993

[14]

Desmons J., Beccaluva L. Mid-Ocean Ridge and Island-Arc Affinities in Ophiolites from Iran: Palaeographic Implications. Chemical Geology, 1983, 39(1–2): 39-63.

[15]

Dilek Y., Delaloye M. Structure of the Kizildag Ophiolite, a Slow-Spread Cretaceous Ridge Segment North of the Arabian Promontory. Geology, 1992, 20(1): 19-22.

[16]

Dilek Y., Furnes H., Shallo M. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 2008, 100: 174-209.

[17]

Dilek Y., Furnes H., Shallo M. Suprasubduction Zone Ophiolite Formation along the Periphery of Mesozoic Gondwana. Gondwana Research, 2007, 11(4): 453-475.

[18]

Dilek Y., Moores E. M., . Malpas J., Moores E. M., Panayiotou A., . Regional Tectonics of the Eastern Mediterranean Ophiolites. Ophiolites, Oceanic Crustal Analogues. Proceedings of the Symposium “Troodos 1987”, 1987, 295-309.

[19]

Floyd P. A., Winchester J. A. Magma Type and Tectonic Setting Discrimination Using Immobile Trace Elements. Earth and Planetary Science Letters, 1975, 27: 211-218.

[20]

Gharib F., De Wever P. Mesozoic Radiolarians from the Kermanshah Formation (Iran). Comptes Rendus Palevol, 2010, 9: 209-219.

[21]

Ghazi A. M., Hassanipak A. A. Geochemistry of Subalkaline and Alkaline Extrusives from the Kermanshah Ophiolite, Zagros Suture Zone, Western Iran: Implications for Tethyan Plate Tectonics. Journal of Asian Earth Sciences, 1999, 17: 319-332.

[22]

Harper G. D. Pumpellyosite and Prehnitite Associated with Epidosite in the Josephine Ophiolite—Ca Metasomatism during Upwelling of Hydrothermal Fluids at a Spreading Axis. Geological Society of America, Special Papers, 1995, 296: 101-122.

[23]

Harper G. D., Bowman J. R., Kuhns R. A Field, Chemical, and Stable Isotope Study of Subseafloor Metamorphism of the Josephine Ophiolite, California-Oregon. Journal of Geophysical Research, 1988, 93: 4625-4657.

[24]

Hassanipak A. A., Ghazi A. M. Petrology, Geochemistry and Tectonic Setting of the Khoy Ophiolite, Northwest Iran: Implications for Tethyan Tectonics. Journal of Asian Earth Sciences, 2000, 18: 109-121.

[25]

Hébert R., Huot F., Wang C., . Yarlung Zangbo Ophiolites (Southern Tibet) Revisited: Geodynamic Implications from the Mineral Record. Geological Society, London, Special Publications, 2003, 218(1): 165-190.

[26]

Hebert R., Laurent R. Malpas J. The Mineralogical Study of a Cross-Section through the Plutonic Part of the Troodos Ophiolite: New Constraints for Genesis of Arc-Type Ophiolite. Geological Survey Department, Nicosia, Cyprus, 1989, 149-164.

[27]

Irvine T. N., Baragar W. R. A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548.

[28]

Jenner G. J. Wyman D. A. Trace Element Geochemistry of Igneous Rocks: Geo-Chemical Nomenclature and Analytical Geochemistry. Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, Volume 12, 1996, 51-78.

[29]

Kelemen P. B., Shimizu N., Dunn T. Relative Depletion of Niobium in Some Arc Magmas and the Continental Crust: Partitioning of K, Nb, La and Ce during Melt/Rock Reaction in the Upper Mantle. Earth and Planetary Science Letters, 1993, 120(3–4): 111-134.

[30]

Kiani M., Panahi A., Shabani Z., . Geology, Petrology and Geochemical Dispersion of Elements in Noorabad Ophiolite (Northwest Lorestan), Iran. Journal of Academic and Applied Studies (Special Issue on Applied Sciences), 2014, 4(2): 37-50.

[31]

Malpas J., Zhou M. F., Robinson P. T., . Geochemical and Geochronological Constraints on the Origin and Emplacement of the Yarlung Zangbo Ophiolites, Southern Tibet. Geological Society, London, Special Publications, 2003, 218(1): 191-206.

[32]

Middlemost E. A. K. The Basalt Clan. Earth Science Review, 1977, 1: 51-57.

[33]

Monnier C., Girardeau J., Maury R. C., . Back-Arc Basin Origin for the East Sulawesi Ophiolite (Eastern Indonesia). Geology, 1995, 23: 851-854.

[34]

Moores E. M., Robinson P. T., Malpas J., . Model for the Origin of the Troodos Massif, Cyprus, and Other Mid-East Ophiolites. Geology, 1984, 12: 500-503.

[35]

Parlak O., Höck V., Kozlu H., . Oceanic Crust Generation in an Island Arc Tectonic Setting, SE Anatolian Orogenic Belt (Turkey). Geological Magazine, 2006, 141: 583-603.

[36]

Pearce J. A. Wyman D. A. A User’s Guide to Basalt Discrimination Diagrams. Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, Volume 12, 1996, 79-113.

[37]

Pearce J. A., Baker P. E., Harvey P. K., . Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc. Journal of Petrology, 1995, 36(4): 1073-1109.

[38]

Pearce J. A., Peate D. W. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 251-285.

[39]

Pearce J. A., Lippard S. J., Roberts S. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 1984, 16(1): 77-94.

[40]

Pearce J. A. Thorpe E. S. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Andesites, 1982, 525-548.

[41]

Pearce J. A., Alabaster T., Shelton A. W., . The Oman Ophiolite as a Cretaceous Arc-Basin Complex: Evidence and Implications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 300(1454): 299-317.

[42]

Pearce J. A., Cann J. R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 1973, 19(2): 290-300.

[43]

Rampone E., Piccardo G. B. The Ophiolite–Oceanic Lithosphere Analogue: New Insights from the Northern Apennines (Italy). Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America Special Paper, 2000, 349: 21-34.

[44]

Ricou L. E., Marcoux J. General Organisation and Structural Role of Radiolarites and Ophiolites along the Alpine-Mediterranean System. Bulletin Society Geology France, 1980, 1(7): 1-14.

[45]

Ricou L. E., Braud J., Brunn J. H. The Zagros. Memoire Hors Series Society Geology France, 1977, 8: 33-52.

[46]

Robinson P. T., Malpas J., . Malpas J., Moores E. M., Panayiotou A., . The Troodos Ophiolite of Cyprus: New Perspectives on Its Origin and Emplacement. Ophiolites, Oceanic Crustal Analogues. Proceedings of the Symposium “Troodos 1987”, 1990, 13-26.

[47]

Robertson A. H. F. Overview of Tectonic Settings Related to the Rifting and Opening of Mesozoic Ocean Basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean Regions. Geological Society, London, Special Publications, 2007, 282(1): 325-388.

[48]

Rolland Y. Middle Cretaceous Back Arc Formation and Arc Evolution along the Asian Margin. Tectonophysics, 2000, 325: 145-173.

[49]

Sarkarinejad K. Ishiwatari A. Petrology and Tectonic Setting of the Neyriz Ophiolite, Southeast Iran. Circum-Pacific Ophiolites, 1994, 221-234.

[50]

Saccani E., Allahyari K., Beccaluva L., . Geochemistry and Petrology of the Kermanshah Ophiolites (Iran): Implication for the Interaction between Passive Rifting, Oceanic Accretion, and OIB-Type Components in the Southern Neo-Tethys Ocean. Gondwana Research, 2013, 24(1): 392-411.

[51]

Shafaii Moghadam H., Stern R. J., Kimura J. I., . Hf-Nd Isotopic Constraints on the Origins of Zagros Ophiolites. The Island Arc, 2012, 21: 202-214.

[52]

Shafaii Moghadam H., Stern R. J. Geodynamic Evolution of Upper Cretaceous Zagros Ophiolites: Formation of Oceanic Lithosphere above a Nascent Subduction Zone. Geological Magazine, 2011, 148: 762-801.

[53]

Shafaii Moghadam H., Whitechurch H., Rahgoshay M., . Significance of Nain-Baft Ophiolitic Belt (Iran): Short-Lived, Transtensional Cretaceous Back-Arc Oceanic Basins over the Tethyan Subduction Zone. Comptes Rendus Geosciences, 2009, 341: 1016-1028.

[54]

Shahbazi H., Siebel W., Pourmoafee M., . Geochemistry and U-Pb Zircon Geochronology of the Alvand Plutonic Complex in Sanandaj-Sirjan Zone (Iran): New Evidence for Jurassic Magmatism. Journal of Asian Earth Sciences, 2010, 39: 668-683.

[55]

Shahidi M., Nazari H. Geological Map of Harsin, 1: 100 000 Scale, 1997

[56]

Shervais J. W. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 1982, 59(1): 101-118.

[57]

Stöcklin J. Possible Ancient Continental Margins in Iran. The Geology of Continental Margins, 1974, 113: 873-887.

[58]

Stöcklin J. Structural History and Tectonics of Iran: A Review. American Association of Petroleum Geologists Bulletin, 1968, 52: 1229-1258.

[59]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[60]

Tahmasbi Z., Castro A., Khalili M., . Petrologic and Geochemical Constraints on the Origin of Astaneh Pluton, Zagros Orogenic Belt, Iran. Journal of Asian Earth Sciences, 2010, 39(3): 81-96.

[61]

Takin M. Iranian Geology and Continental Drift in the Middle East. Nature, 1972, 235(5334): 147-150.

[62]

Tribuzio R., Tiepolo M., Vannucci R., . Trace Element Distribution within Olivine-Bearing Gabbros from the Northern Apennine Ophiolites (Italy): Evidence for Post-Cumulus Crystallization in MOR-Type Gabbroic Rocks. Contributions to Mineralogy and Petrology, 1999, 134(2–3): 123-133.

[63]

Varol E., Bedi Y., Tekin U. K., . Geochemical and Petrological Characteristics of Late Triassic Basic Volcanic Rocks from the Kocali Complex, SE Turkey: Implications for the Triassic Evolution of Southern Tethys. Ofioliti, 2011, 36: 101-115.

[64]

Winchester J. A., Floyd P. A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 1977, 20: 325-343.

[65]

Wood D. A. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 1980, 50(1): 11-30.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/