Evaluation of slip rate on Astara fault system, North Iran

Amir Barzegari , Rasoul Esmaeili , Mohammad Ebrahimi , Ali Faghih , Manucher Ghorashi , Hamid Nazari

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 971 -980.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 971 -980. DOI: 10.1007/s12583-016-0680-x
Special Column on Tectonics of Turkey and Iran and Comparison with Other Tethyan Domains

Evaluation of slip rate on Astara fault system, North Iran

Author information +
History +
PDF

Abstract

Due to its strategic location, the Astara fault system (AFS), which is located in Iran, has given rise to a number of earthquakes. In spite of its frequent seismic events, limited information is available for AFS. Slip rate is one of the important variables for future scrutiny of seismic risk of this fault system. The main objective of this research is to study slip rates at intermediate and short terms for this fault system using geological, geodetic observations and empirical method. Using the geological data, the intermediate-term horizontal and vertical slip rates for AFS have been determined to be 2.8±0.2 and 0.27±0.03 mm/year, respectively. In addition, the short-term slip rates of the fault, based on the geodetic method (using displacement values of two GPS stations: HASH and DAMO) and assuming attenuation of 60% (to fold the sediment of South Caspian Basin and shortening of Talesh Mountain range), determined to be 1.23±0.03 and 2.05±0.05 mm/year for the horizontal and vertical slips, respectively. Finally, evaluation of the slip rate using empirical relationship yields 10 mm/year for the entire fault system, which seems rather implausible.

Keywords

Astara fault system / intermediate slip rate / geodetic slip rate / empirical slip rate / Gutenberg-Richter method / focal depth

Cite this article

Download citation ▾
Amir Barzegari, Rasoul Esmaeili, Mohammad Ebrahimi, Ali Faghih, Manucher Ghorashi, Hamid Nazari. Evaluation of slip rate on Astara fault system, North Iran. Journal of Earth Science, 2016, 27(6): 971-980 DOI:10.1007/s12583-016-0680-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen M. B., Vincent S. J., Alsop G. I., . Late Cenozoic Deformation in the South Caspian Region: Effects of a Rigid Basement Block within a Collision Zone. Tectonophysics, 2003, 366(3–4): 223-239.

[2]

Ambraseys N. N., Jackson J. A. Faulting Associated with Historical and Recent Earthquakes in the Eastern Mediterranean Region. Geophysical Journal International, 1998, 133(2): 390-406.

[3]

Ambraseys N. N., Melville C. P. A History of Persian Earthquakes, 1982, 219.

[4]

Ashtari M., Hatzfeld D., Kamalian N. Microseismicity in the Region of Tehran. Tectonophysics, 2005, 395(3–4): 193-208.

[5]

Berberian M. The Southern Caspian: A Compressional Depression Floored by a Trapped, Modified Oceanic Crust. Canadian Journal of Earth Sciences, 1983, 20(2): 163-183.

[6]

Berberian M., Yeats R. S. Patterns of Historical Earthquake Rupture in the Iranian Plateau. Bulletin of the Siesmological Society of America, 1999, 89: 120-139.

[7]

Brunet M. F., Korotaev M. V., Ershov A. V., . The South Caspian Basin: A Review of Its Evolution from Subsidence Modelling. Sedimentary Geology, 2003, 156(1–4): 119-148.

[8]

Campos J., Madariaga R., Nábelek J., . Faulting Process of the 1990 June 20 Iran Earthquake from Broadband Records. Geophysical Journal International, 1994, 118(1): 31-46.

[9]

Djamour Y., Vernant P., Nankali H. R., . Iran-Eastern Turkey Present-Day Kinematics: Results from the Iranian Permanent GPS Network. Earth and Planetary Science Letters, 2010, 307(1–2): 27-34.

[10]

Engdahl E. R., Jackson J. A., Myers S. C., . Relocation and Assessment of Seismicity in the Iran Region. Geophysical Journal International, 2006, 167(2): 761-778.

[11]

Foroutan M. Paleoseismology and Morphotectonics of Dehshir Fault: [Dissertation], 2008

[12]

Gardner J. K., Knopoff L. Is the Sequence of Earthquakes in Southern California with Aftershocks Removed, Poissonian. Bulletin of the Siesmological Society of America, 1974, 64: 1363-1367.

[13]

Gutenberg B., Richter C. F. Frequency of Earthquakes in California. Bulletin of the Siesmological Society of America, 1944, 34: 185-188.

[14]

Hanks T. C., Kanamori H. A Moment Magnitude Scale. Journal of Geophysical Research, 1979, 84 B5 2348

[15]

Heaton T. H., Tajima F., Mori A. W. Estimating Ground Motions Using Recorded Accelerograms. Surveys in Geophysics, 1986, 8(1): 25-83.

[16]

International Commission on Large Dams ICOLD. Neotectonics and Dams. Bulletin International, 1998, 148: 214-245.

[17]

Iranian code of practice for seismic resistant design of buildings, standard No. 280. Permanent Committee for Revising the Iranian Code of Practice for Seismic Resistant Design of Buildings, 2015

[18]

Jackson J., Priestley K., Allen M., . Active Tectonics of the South Caspian Basin. Geophysical Journal International, 2002, 148(2): 214-245.

[19]

Kaveh A., Nazari H., Ghorashi M., . Morphotectonic Map of the Talesh Mountains, 2013

[20]

Kaz’min V. G., Verzhbitskii E. V. Age and Origin of the South Caspian Basin. Oceanology, 2011, 51(1): 131-140.

[21]

Keilis-Borok V. I., Knopoff L., Rotvain I. M. Bursts of Aftershocks, Long-Term Precursors of Strong Earthquakes. Nature, 1980, 283(5744): 259-263.

[22]

Khodabanede A. A., Soltani G. A., Babakhani A. R. Geological Map of Astara, 1997

[23]

Nazari H., Shahidi A. Seismotectonic of Iran (Alborz), 2011, 97.

[24]

Nowroozi A. A. Empirical Relations between Magnitude and Fault Parameter for Earthquakes in Iran. Bulletin of the Seismological Society of America, 1985, 75(5): 1327-1338.

[25]

Reid H. F. The Mechanics of the Earthquake, the California Earthquake of April 18, 1906, Report of the Satate Investigation Commission, 1910

[26]

Reilinger R., McClusky S., Vernant P., . GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. Journal of Geophysical Research: Solid Earth, 2006, 111 B5 B05411

[27]

Slemmons D. B. Determination of Design Earthquake Magnitude for Microzonation, Proc. of the Third Int. Earthquake Microzonation Conference, 1982, 119-130.

[28]

Stirling M. W., Wesnousky S. G. Do Historical Rates of Seismicity in Southern California Require the Occurrence of Earthquake Magnitude Greater than would be Predicted from Fault Length. Bulletin of the Seismological Society of America, 1997, 87: 1662-1666.

[29]

Tatar M., Hatzfeld D. Microseismic Evidence of Slip Partitioning for the Rudbar-Tarom Earthquake (Ms 7.7) of 1990 June 20 in NW Iran. Geophysical Journal International, 2009, 176(2): 529-541.

[30]

Tatar M., Jackson J., Hatzfeld D., . The 2004 May 28 Baladeh Earthquake (Mw 6.2) in the Alborz, Iran: Overthrusting the South Caspian Basin Margin, Partitioning of Oblique Convergence and the Seismic Hazard of Tehran. Geophysical Journal International, 2007, 170(1): 249-261.

[31]

Wells D. L., Coppersmith K. J. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin Seismological Society of America, 1994, 84: 974-1002.

[32]

Wesnousky S. G. The Gutenberg-Richter or Characteristic Earthquake Distribution, Which is It. Bulletin of the Seismological Society of America, 1997, 84: 1940-1959.

[33]

Yousefi E., Friedberg J. L. Aeromagnetic Map of Iran Quadrangle No. P4. Scale: 1: 250 000, 1978

[34]

Zanjani A. A., Ghods A., Sobouti F., . Seismicity in the Western Coast of the South Caspian Basin and the Talesh Mountains. Geophysical Journal International, 2013, 195(2): 799-814.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/