Paleoproductivity and paleoredox condition of the Huai Hin Lat Formation in northeastern Thailand

Boonnarong Arsairai , Akkhapun Wannakomol , Qinglai Feng , Chongpan Chonglakmani

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (3) : 350 -364.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (3) : 350 -364. DOI: 10.1007/s12583-016-0666-8
Article

Paleoproductivity and paleoredox condition of the Huai Hin Lat Formation in northeastern Thailand

Author information +
History +
PDF

Abstract

The petroleum exploration has been conducted in the Khorat Plateau since 1962 and two gas fields have been discovered and commercially produced. The lacustrine facies of the Huai Hin Lat Formation is believed to be one of the main source rocks of the gas. Therefore, investigation and analysis of the Huai Hin Lat shale for understanding the paleoenvironment and petroleum source rock are carried out in this study. Petrographical study and geochemical analysis of shale samples were performed to explain the paleoproductivity and past redox condition. The palynofacies assemblage comprises abundant AOM, acritarchs, phytoclasts, and very small amount of spores and pollen. Geochemical analysis was used to determine the total organic carbon (TOC) and the concentration of major, trace, and rare earth elements. The paleoproductivity proxies are composed of palynofacies, TOC, excess SiO2, Ba/Al, and P/Al. They reflect a high paleoproductivity except the middle of the lower part (bed 3) and the lower bed 13 of the upper part. Bed 3 shows the highest peak of TOC and the lower bed 13 exhibits a relatively lower TOC, which can be explained by the excellent and the poorer preservation condition, respectively. The paleoredox proxies consist of U/Th, V/Cr, NiCo, (Cu+Mo)/Zn, Ni/V, and Ce anomaly. They are used to establish the depositional environments, to characterize the organic matter content, and to assess the source rock potential. They reflect many high peaks and predominantly high values of paleoredox proxies except the middle part and the lower bed (lower bed 13) of the upper part. They indicate that the section was mainly under anoxic or reducing condition, which is supported by the high Ce/Ce* (>0.8) and V/Cr (>2.0) values. The middle of the lower part (bed 3) shows lower productivity but it contains the highest peak of TOC, which is conformed to be the excellent preservation of organic matters in the strong reducing condition. The middle part, which shows high productivity, contains relatively lower TOC as it possesses a less reducing condition compared to the more reducing intervals. The lower bed 13 of the upper part shows a less reducing condition and a lower TOC, which conforms to a lower productivity. The organic matters of the Huai Hin Lat Formation consist mainly of AOM and acritarchs and possess good to excellent TOC (2%–7%). They belong mainly to type I and type II kerogens with some mixture of type III as indicated by the presence of phytoclasts, spores, and pollen. The organic matters of the Huai Hin Lat Formation, based on the kerogen type and the thermal history, have already generated significant amount of oil and some gas to the Sap Phlu Basin.

Keywords

fluvio-lacustrine facies / Sap Phlu Basin / primary productivity / TOC / acritarchs / organic carbon preservation / reducing condition / anoxic environment

Cite this article

Download citation ▾
Boonnarong Arsairai, Akkhapun Wannakomol, Qinglai Feng, Chongpan Chonglakmani. Paleoproductivity and paleoredox condition of the Huai Hin Lat Formation in northeastern Thailand. Journal of Earth Science, 2016, 27(3): 350-364 DOI:10.1007/s12583-016-0666-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adachi M., Yamamoto K., Sugisaki R. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication OD Ocean Ridge Activity.. Sedimentary Geology, 1986, 47(1/2): 125-148.

[2]

Albani R., Bagnoli G., Bernárdez E., . Late Cambrian Acritarchs from the “Túnel Ordovícico Del Fabar”, Cantabrian Zone, N Spain.. Review of Palaeobotany and Palynology, 2006, 139(1–4): 41-52.

[3]

Algeo T. J., Maynard J. B. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems.. Chemical Geology, 2004, 206(3/4): 289-318.

[4]

Battarbee R. W. Palaeolimnological Approaches to Climate Change, with Special Regard to the Biological Record.. Quaternary Science Reviews, 2000, 19(1–5): 107-124.

[5]

Batten D. J. Jansonius J., McGregor D. C. Palynofacies and Petroleum Potential. Palynology: Principles and Applications, 1996 Dallas: American Association of Stratigraphic Palynologists Foundation, 1065-1084.

[6]

Bertrand S., Charlet F., Charlier B., . Climate Variability of Southern Chile since the Last Glacial Maximum: A Continuous Sedimentological Record from Lago Puyehue (40°S).. Journal of Paleolimnology, 2008, 39(2): 179-195.

[7]

Bishop J. K. B. The Barite-Opal-Organic Carbon Association in Oceanic Particulate Matter.. Nature, 1988, 332(6162): 341-343.

[8]

Bjorlykke K. Depositional History and Geochemical Composition of Epicontinental Sediments from the Oslo Region. Nor. Geol. Unders.. Arsmelding, 1974, 305: 87-95.

[9]

Booth J. E. The Khorat Plateau of NE Thailand––Exploration History and Hydrocarbon Potential. Proceedings of the 1998 SEAPEX Exploration Conferences, 1998, 169-202.

[10]

Booth J. E., Sattayarak N. Ridd M. F., Barber A. J., Crow M. J. Subsurface Carboniferous–Cretaceous Geology of NE Thailand. The Geology of Thailand, 2011 London: Geological Society, 185-222.

[11]

Breit G. N., Wanty R. B. Vanadium Accumulation in Carbonaceous Rocks: A Review of Geochemical Controls during Deposition and Diagenesis.. Chemical Geology, 1991, 91(2): 83-97.

[12]

Brumsack H. J. Geochemistry of Recent TOC-Rich Sediments from the Gulf of California and the Black Sea.. Geologische Rundschau, 1989, 78(3): 851-882.

[13]

Calvert S. E., Pedersen T. F. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record.. Marine Geology, 1993, 113(1/2): 67-88.

[14]

Calvert S. E., Piper D. Z. Geochemistry of Ferromanganese Nodules from DOMES Site A, Northern Equatorial Pacific: Multiple Diagenetic Metal Sources in the Deep Sea.. Geochimica et Cosmochimica Acta, 1984, 48(10): 1913-1928.

[15]

Chonglakmani C. Ridd M. F., Barber A. J., Crow M. J. Triassic. The Geology of Thailand, 2011 London: Geological Society

[16]

Chonglakmani C., Sattayarak N. Nutayala P. Stratigraphy of the Huai Hin Lat Formation (Upper Triassic) in Northeastern, Thailand. Proceedings of the third Regional Conference on the Geology and Mineral Resources of Southeast Asia, 1978, 739-762.

[17]

Cohen A. S. Paleolimnology: History and Evolution of Lake Systems, 2003 Oxford: Oxford University Press, 500.

[18]

Crusius J., Thomson J. Comparative Behavior of Authigenic Re, U, and Mo during Reoxidation and Subsequent Long-Term Burial in Marine Sediments.. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-2242.

[19]

Daskaladis K. D., Helz G. R. The Solubility of Sphalerite in Sulfidic Solutions at 25 ºC and 1 atm Pressure.. Geochimical et Cosmochimica Acta, 1993, 57: 4923-4931.

[20]

Dill H. Metallogenesis of Early Paleozoic Graptolite Shales from the Graefenthal Horst (Northern Bavaria-Federal Republic of Germany).. Economic Geology, 1986, 81(4): 889-903.

[21]

Dill H., Teschner M., Wehner H. Petrography, Inorganic and Organic Geochemistry of Lower Permian Carbonaceous Fan Sequences (“Brandschiefer Series”)—Federal Republic of Germany: Constraints to Their Paleogeography and Assessment of Their Source Rock Potential.. Chemical Geology, 1988, 67(3/4): 307-325.

[22]

DMR, 2007. [2016-04-22] http://www.dmr.go.th/download/pdf/NorthEast/korat.pdf

[23]

Dymond J., Suess E., Lyle M. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity.. Paleoceanography, 1992, 7(2): 163-181.

[24]

Ernst T. W. Geochemical Facies Analysis, 1970 Amsterdam: Elsevier, 152.

[25]

Eusterhues K., Heinrichs H., Schneider J. Geochemical Response on Redox Fluctuations in Holocene Lake Sediments, Lake Steisslingen, Southern Germany.. Chemical Geology, 2005, 222(1/2): 1-22.

[26]

Ferrari O. M., Hochard C., Stampfli G. M. An Alternative Plate Tectonic Model for the Palaeozoic–Early Mesozoic Palaeotethyan Evolution of Southeast Asia (Northern Thailand-Burma).. Tectonophysics, 2008, 451(1–4): 346-365.

[27]

German C. R., Elderfield H. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules.. Paleoceanography, 1990, 5(5): 823-833.

[28]

Gingele F., Dahmke A. Discrete Barite Particles and Barium as Tracers of Paleoproductivity in South Atlantic Sediments.. Paleoceanography, 1994, 9(1): 151-168.

[29]

Grosjean E., Adam P., Connan J., . Effects of Weathering on Nickel and Vanadyl Porphyrins of a Lower Toarcian Shale of the Paris Basin.. Geochimica et Cosmochimica Acta, 2004, 68(4): 789-804.

[30]

Gupta L. P., Kawahata H. Downcore Diagenetic Changes in Organic Matter and Implications for Paleoproductivity Estimates.. Global and Planetary Change, 2006, 53(1/2): 122-136.

[31]

Haile N. S. Note on Triassic Fossil Pollen from Nam Pha Formation, Chulabhon (Nam Phrom) Dam, Thailand.. GST Newsletter, 1973, 6(1): 15-16.

[32]

Hallberg R. O. A Geochemical Method for Investigation of Palaeoredox Conditions in Sediments. Ambio, Spec. Rep., 1976, 4: 139-147.

[33]

Hallberg R. O. Fanning K. A., Manheim F. T. Diagenetic and Environmental Effects on Heavy-Metal Distribution in Sediments: A Hypothesis with an Illustration from the Baltic Sea. The Dynamic Environment of the Ocean Floor, 1982 Lexington: Lexington Books, 305-316.

[34]

Huerta-Diaz M. A., Morse J. W. A Quantitative Method for Determination of Trace Metal Concentrations in Sedimentary Pyrite.. Marine Chemistry, 1990, 29: 119-144.

[35]

Huerta-Diaz M. A., Morse J. W. Pyritization of Trace Metals in Anoxic Marine Sediments.. Geochimica et Cosmochimica Acta, 1992, 56(7): 2681-2702.

[36]

Jeandel C., Tachikawa K., Bory A., . Biogenic Barium in Suspended and Trapped Material as a Tracer of Export Production in the Tropical NE Atlantic (EUMELI Sites).. Marine Chemistry, 2000, 71(1/2): 125-142.

[37]

Johnson C. M., Fawcett P. J., Ali A. S. Geochemical Indicators of Redox Conditions as a Proxy for Mid-Pleistocene Climate Change from a Lacustrine Sediment Core, Valles Caldera, New Mexico. New Mexico Geological Society Guidebook, 2007, 418-423.

[38]

Jones B., Manning D. A. C. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.. Chemical Geology, 1994, 111(1–4): 111-129.

[39]

Kakuwa Y., Matsumoto R. Cerium Negative Anomaly just before the Permian and Triassic Boundary Event—The Upward Expansion of Anoxia in the Water Column.. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 335-344.

[40]

Kato Y., Yamaguchi K. E., Ohmoto H. Rare Earth Elements in Precambrian Banded Iron Formations: Secular Changes of Ce and Eu Anomalies and Evolution of Atmospheric Oxygen. Memoir 198: Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere-Constraints from Ore DeposIts, 2006, 269-289.

[41]

Kobayasi T. Upper Triassic estheriids in Thailand and the conchostracan development in Asia in Mesozoic Era.. Geology and Palaeontology of Southeast Asia, 1973, 16: 57-90.

[42]

Krejci-Graf K. Geochemical Facies of Sediments.. Soil Science, 1975, 119(1): 20-23.

[43]

Lewan M. D. Factors Controlling the Proportionality of Vanadium to Nickel in Crude Oils.. Geochimica et Cosmochimica Acta, 1984, 48(11): 2231-2238.

[44]

Lewan M. D., Maynard J. B. Factors Controlling Enrichment of Vanadium and Nickel in the Bitumen of Organic Sedimentary Rocks.. Geochimica et Cosmochimica Acta, 1982, 46(12): 2547-2560.

[45]

Love L. G. Jensen M. L. Pyrite Spheres in Sediments. In Biogeochemistry of Sulfur Isotopes, 1962 New Haven, Connecticut: Yale University, N.S.F. Symposium, 121-143.

[46]

Mackenzie F. T., Ver L. M., Sabine C., . C, N, P, S Global Biogeochemical Cycles and Modeling of Global Change.. Interactions of C, N, P and S Biogeochemical Cycles and Global Change, 1993, 10: 1-61.

[47]

Martín-Puertas C., Valero-Garcés B. L., Mata M. P., . Geochemical Processes in a Mediterranean Lake: A High-Resolution Study of the Last 4 000 Years in Zoñar Lake, Southern Spain.. Journal of Paleolimnology, 2011, 46(3): 405-421.

[48]

McManus J., Berelson W. M., Klinkhammer G. P., . Authigenic Uranium: Relationship to Oxygen Penetration Depth and Organic Carbon Rain.. Geochimica et Cosmochimica Acta, 2005, 69(1): 95-108.

[49]

Meyers P. A. Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic, and Paleoclimatic Processes.. Organic Geochemistry, 1997, 27(5/6): 213-250.

[50]

Meyers S. R., Sageman B. B., Lyons T. W. Organic Carbon Burial Rate and the Molybdenum Proxy: Theoretical Framework and Application to Cenomanian-Turonian Oceanic Anoxic Event 2.. Paleoceanography, 2005, 20 2 2002

[51]

Monnin C., Jeandel C., Cattaldo T., . The Marine Barite Saturation State of the World’s Oceans.. Marine Chemistry, 1999, 65(3/4): 253-261.

[52]

Morford J. L., Emerson S. The Geochemistry of Redox Sensitive Trace Metals in Sediments.. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750.

[53]

Morse J. W., Luther G. W. Chemical Influences on Trace Metal-Sulfide Interactions in Anoxic Sediments.. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3373-3378.

[54]

Murray R. W., Leinen M. Chemical Transport to the Seafloor of the Equatorial Pacific Ocean across a Latitudinal Transect at 135°W: Tracking Sedimentary Major, Trace, and Rare Earth Element Fluxes at the Equator and the Intertropical Convergence Zone.. Geochimica et Cosmochimica Acta, 1993, 57(17): 4141-4163.

[55]

Oliveira S. M. B., Larizzatti F. E., Fávaro D. I. T., . Rare Earth Element Patterns in Lake Sediments as Studied by Neutron Activation Analysis.. Journal of Radioanalytical and Nuclear Chemistry, 2003, 258(3): 531-535.

[56]

Patterson J. H., Ramsden A. R., Dale L. S., . Geochemistry and Mineralogical Residences of Trace Elements in Oil Shales from Julia Creek, Queensland, Australia.. Chemical Geology, 1986, 55(1/2): 1-16.

[57]

Paytan A., Cade-Menun B. J., McLaughlin K., . Selective Phosphorus Regeneration of Sinking Marine Particles: Evidence from 31P-NMR.. Marine Chemistry, 2003, 82(1/2): 55-70.

[58]

Paytan A. Benthic Ba Fluxes in the Central Equatorial Pacific, Implications for the Oceanic Ba Cycle.. Earth and Planetary Science Letters, 1996, 142(3/4): 439-450.

[59]

Paytan A., Moore W. S., Kastner M. Sedimentation Rate as Determined by 226Ra Activity in Marine Barite.. Geochimica et Cosmochimica Acta, 1996, 60(22): 4313-4319.

[60]

Piper D. Z., Perkins R. B. A Modern vs. Permian Black Shale—The Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition.. Chemical Geology, 2004, 206(3/4): 177-197.

[61]

Prakash Babu C., Brumsack H. J., Schnetger B., . Barium as a Productivity Proxy in Continental Margin Sediments: A Study from the Eastern Arabian Sea.. Marine Geology, 2002, 184(3/4): 189-206.

[62]

Reolid M., Rodriguez-Tovar F. J., Marok A., . The Toarcian Oceanic Anoxic Event in the Western Saharan Atlas, Algeria (North African Paleomargin): Role of Anoxia and Productivity.. Geological Society of America Bulletin, 2012, 124(9/10): 1646-1664.

[63]

Rona P. A. Hydrothermal Mineralization at Oceanic Ridges.. Canadian Mineralogist, 1988, 26: 431-465.

[64]

Rutsch H. J., Mangini A., Bonani G., . 10Be and Ba Concentrations in West African Sediments Trace Productivity in the Past.. Earth and Planetary Science Letters, 1995, 133(1/2): 129-143.

[65]

Schneebeli-Hermann E., Hochuli P. A., Bucher H., . Palynology of the Lower Triassic Succession of Tulong, South Tibet—Evidence for Early Recovery of Gymnosperms.. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 339–341: 12-24.

[66]

Shen J., Algeo T. J., Zhou L., . Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects.. Geobiology, 2012, 10(1): 82-103.

[67]

Shen J., Zhou L., Feng Q. L., . Paleo-Productivity Evolution Across the Permian–Triassic Boundary and Quantitative Calculation of Primary Productivity of Black Rock Series from the Dalong Formation, South China.. Science China: Earth Sciences, 2014, 57(7): 1583-1594.

[68]

Sholkovitz E. R. The Aquatic Chemistry of Rare Earth Elements in Rivers and Estuaries.. Aquatic Geochemistry, 1995, 1(1): 1-34.

[69]

Sone M., Metcalfe I. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny.. Comptes Rendus Geoscience, 2008, 340(2/3): 166-179.

[70]

Suárez-Ruiz I., Flores D., Filho J. G. M., . Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications.. International Journal of Coal Geology, 2012, 99: 54-112.

[71]

Suess E. Particulate Organic Carbon Flux in the Oceans—Surface Productivity and Oxygen Utilization.. Nature, 1980, 288(5788): 260-263.

[72]

Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution, 1985 Oxford: Blackwell Scientific Publication

[73]

Trappe J. Phanerozoic Phosphorite Depositional Systems: A Dynamic Model for a Sedimentary Resource System.. Lecture Notes in Earth Sciences, Springer., 1998, 76 316.

[74]

Tribovillard N., Algeo T. J., Lyons T., . Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update.. Chemical Geology, 2006, 232(1/2): 12-32.

[75]

Ueno K., Charoentitirat T. Ridd M. F., Barber A. J., Crow M. J. Carboniferous and Permian. The Geology of Thailand, 2011 London: Geological Society, 71-135.

[76]

Vallentyne J. R. Jensen M. L. A Chemical Study of Pyrite Spherules Isolated from Sediments of Little Round Lake, Ontario. Biogeochemistry of Sulfur Isotopes, 1962 New Haven, Connecticut: Yale University, N.S.F. Symposium, 144-152.

[77]

Van Cappellen P. V., Ingall E. D. Benthic Phosphorus Regeneration, Net Primary Production, and Ocean Anoxia: A Model of the Coupled Marine Biogeochemical Cycles of Carbon and Phosphorus.. Paleoceanography, 1994, 9(5): 677-692.

[78]

Van der Weijden C. H. V. D. Pitfalls of Normalization of Marine Geochemical Data Using a Common Divisor.. Marine Geology, 2002, 184(3/4): 167-187.

[79]

Vetö I., Demény A., Hertelendi E., . Estimation of Primary Productivity in the Toarcian Tethys—A Novel Approach Based on TOC, Reduced Sulphur and Manganese Contents.. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1–4): 355-371.

[80]

Wehrli B., Stumm W. Vanadyl in Natural Waters: Adsorption and Hydrolysis Promote Oxygenation.. Geochimica et Cosmochimica Acta, 1989, 53(1): 69-77.

[81]

Yamamoto K. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes.. Sedimentary Geology, 1987, 52(1/2): 65-108.

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/