The Pre-Sturtian negative δ13C excursion of the Dajiangbian formation deposited on the western margin of Cathaysia Block in South China

Lianjun Feng , Qirui Zhang

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 225 -232.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 225 -232. DOI: 10.1007/s12583-016-0665-9
Article

The Pre-Sturtian negative δ13C excursion of the Dajiangbian formation deposited on the western margin of Cathaysia Block in South China

Author information +
History +
PDF

Abstract

The Dajiangbian Formation in South China is a siliciclastic-dominated sedimentary succession with low-grade metamorphism deposited on the western margin of the Cathaysia Block, and is capped by a glaciogenic diamictite (the Sizhoushan Formation). The Sizhoushan glaciogenic strata can be attributed to the Jiangkou glacial (Sturtian glacial) episode as they share stratigraphic and lithological similarities with Jiangkou strata in South China. Some carbonate, chert and shale units throughout the upper part of the Dajiangbian Formation were sampled for carbonate carbon isotope (δ13Ccarb) and organic carbon isotope (δ13Corg) analyses. A range of geochemical indices including oxygen isotopes (δ18O) and Mn/Sr (Fe/Sr) ratios suggest that primary carbon isotope values were preserved in the upper Dajiangbian Formation. The upper Dajiangbian Formation shows δ13Ccarb of -0.1‰, upward decreasing towards to -5.4‰. We suggest that the negative δ13C excursion beneath the Sizhoushan diamictite is correlative with the Pre-Sturtian Islay δ13Ccarb anomaly and allows correlation with the global Neoproterozoic isotope stratigraphy. We find that carbonate and organic carbon isotope data of the upper Dajiangbian Formation are coupled, consistent with the δ13Ccarb13Corg pattern observed on multiple continents.

Keywords

Neoproterozoic / Cryogenian / carbon isotopes / Islay anomaly / Cathaysia Block

Cite this article

Download citation ▾
Lianjun Feng, Qirui Zhang. The Pre-Sturtian negative δ13C excursion of the Dajiangbian formation deposited on the western margin of Cathaysia Block in South China. Journal of Earth Science, 2016, 27(2): 225-232 DOI:10.1007/s12583-016-0665-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Banner J. L., Hanson G. N. Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 1990, 54(11): 3123-3137.

[2]

Brand U., Veizer J. Chemical Diagenesis of a Multicomponent Carbonate System; 1, Trace Elements. Journal of Sedimentary Research, 1980, 50(4): 1219-1236.

[3]

Brand U., Veizer J. Chemical Diagenesis of a Multicomponent Carbonate System; 2, Stable Isotopes. Journal of Sedimentary Research, 1981, 51(3): 987-997.

[4]

Calver C. R. Isotope Stratigraphy of the Neoproterozoic Togari Group, Tasmania. Australian Journal of Earth Sciences, 1998, 45(6): 865-874.

[5]

Condon D., Zhu M. Y., Bowring S., . U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308(5718): 95-98.

[6]

Derry L. A., Kaufman A. J., Jacobsen S. B. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 1992, 56(3): 1317-1329.

[7]

Fairchild, I. J., Marshall, J. D.,Bertrand-Sarfati, J., 1990. Stratigraphic Shifts in Carbon Isotopes from Proterozoic Stromatolitic Carbonates (Mauritania): Influences of Primary Mineralogy and Diagenesis. American Journal of Science, 290–A: 46–79

[8]

Halverson G. P., Shields-Zhou G. Chapter 4 Chemostratigraphy and the Neoproterozoic Glaciations. Geological Society, London, Memoirs, 2011, 36(1): 51-66.

[9]

Hoffman P. F., Halverson G. P., Domack E. W., . Cryogenian Glaciations on the Southern Tropical Paleomargin of Laurentia (NE Svalbard and East Greenland), and a Primary Origin for the Upper Russoya (Islay) Carbon Isotope Excursion. Precambrian Research, 2012, 206: 137-158.

[10]

Huang J. Z., Tang X. S., Zhang C. C., . New Stratigraphic Division and Correlation of Sinian System in Southeastern Hunan. Hunan Geology, 1994, 13(3): 129-136.

[11]

Johnston D. T., Macdonald F. A., Gill B. C., . Uncovering the Neoproterozoic Carbon Cycle. Nature, 2012, 483(7389): 320-U110.

[12]

Jones D. S., Maloof A. C., Hurtgen M. T., . Regional and Global Chemostratigraphic Correlation of the Early Neoproterozoic Shaler Supergroup, Victoria Island, Northwestern Canada. Precambrian Research, 2010, 181(1–4): 43-63.

[13]

Kaufman A. J., Jacobsen S. B., Knoll A. H. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 1993, 120(3–4): 409-430.

[14]

Kaufman A. J., Knoll A. H. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 1995, 73(1–4): 27-49.

[15]

Knoll A. H., Grotzinger J. P., Kaufman A. J., . Integrated Approaches to Terminal Proterozoic Stratigraphy: An Example from the Olenek Uplift, Northeastern Siberia. Precambrian Research, 1995, 73(1–4): 251-270.

[16]

Lan Z. W., Li X. H., Zhu M. Y., . A Rapid and Synchronous Initiation of the Wide Spread Cryogenian Glaciations. Precambrian Research, 2010, 255: 401-411.

[17]

Li W. X., Li X. H., Li Z. X. Neoproterozoic Bimodal Magmatism in the Cathaysia Block of South China and Its Tectonic Significance. Precambrian Research, 2005, 136(1): 51-66.

[18]

Li Z. X., Zhang L. h., Powell C. M. South China in Rodinia: Part of the Missing Link between Australia-East Antarctica and Laurentia?. Geology, 1995, 23(5): 407-410.

[19]

Li Z. X., Li X. H., Zhou H. W., . Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 2002, 30(2): 163-166.

[20]

Lorens R. B. Sr, Cd, Mn and Co Distribution Coefficients in Calcite as a Function of Calcite Precipitation Rate. Geochimica et Cosmochimica Acta, 1981, 45(4): 553-561.

[21]

Macdonald F. A., Schmitz M. D., Crowley J. L., . Calibrating the Cryogenian. Science, 2010, 327(5970): 1241-1243.

[22]

Marais D. J. D., Strauss H., Summons R. E., . Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment. Nature, 1992, 359(6396): 605-609.

[23]

McCay G. A., Prave A. R., Alsop G. I., . Glacial Trinity: Neoproterozoic Earth History within the British-Irish Caledonides. Geology, 2006, 34(11): 909-912.

[24]

Prave A. R., Fallick A. E., Thomas C. W., . A Composite C-Isotope Profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland. Journal of the Geological Society, 2010, 166: 845-857.

[25]

Rooney A. D., Macdonald F. A., Strauss J. V., . Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1): 51-56.

[26]

Schrag D. P., Berner R. A., Hoffman P. F., . On the Initiation of a Snowball Earth. Geochemistry Geophysics Geosystems, 2002, 3.

[27]

Shu L. S., Faure M., Yu J. H., . Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 2011, 187(3–4): 263-276.

[28]

Strauss J. V., Rooney A. D., Macdonald F. A., . 740 Ma Vase-Shaped Microfossils from Yukon, Canada: Implications for Neoproterozoic Chronology and Biostratigraphy. Geology, 2014, 42(8): 659-662.

[29]

Swanson-Hysell N. L., Rose C. V., Calmet C. C., . Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling. Science, 2010, 328(5978): 608-611.

[30]

Swanson-Hysell N. L., Maloof A. C., Condon D. J., . Stratigraphy and Geochronology of the Tambien Group, Ethiopia: Evidence for Globally Synchronous Carbon Isotope Change in the Neoproterozoic, 2015

[31]

Tang X. S., Huang J. Z., Zhang C. C. The Precambrian on the Northern Margin of the South China Terrane (Hunan Part). Regional Geology of China, 1994, 4: 303-310.

[32]

Tziperman E., Halevy I., Johnston D. T., . Biologically Induced Initiation of Neoproterozoic Snowball-Earth Events. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15091-15096.

[33]

Wang J., Li Z. X. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 2003, 122(1–4): 141-158.

[34]

Wang X. L., Zhou J. C., Griffin W. L., . Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 2007, 159(1-2): 117-131.

[35]

Wu H., Jiang X. S., Wang J., . Ages and Provenance of the Neoproterozoic Dajiangbian Formation and Aiqiling Formation in Southeast Hunan Province: U-Pb Geochronological Evidence of Detrital Zircons. Geological Review, 2013, 59(5): 853-868.

[36]

Zhang Q. R., Chu X. L., Feng L. J. Neoproterozoic Glacial Records in the Yangtze Region, China. Geological Society, London, Memoirs, 2011, 36(1): 357-366.

[37]

Zhao G. C., Cawood P. A. Tectonothermal Evolution of the Mayuan Assemblage in the Cathaysia Block: Implications for Neoproterozoic Collision-Related Assembly of the South China Craton. American Journal of Science, 1999, 299(4): 309-339.

[38]

Zhao G. C., Cawood P. A. Precambrian Geology of China. Precambrian Research, 2012, 222: 13-54.

[39]

Zhao J. H., Zhou M. F., Yan D. P., . Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 2011, 39(4): 299-302.

[40]

Zhou C. M., Tucker R., Xiao S. H., . New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 2004, 32(5): 437-440.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/