Sedimentation in a continental high-frequency oscillatory lake in an arid climatic background: A case study of the Lower Eocene in the Dongying depression, China

Jie Liu , Jian Wang , Yingchang Cao , Guoqi Song

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 628 -644.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 628 -644. DOI: 10.1007/s12583-016-0635-2
Paleontology and Sedimentology

Sedimentation in a continental high-frequency oscillatory lake in an arid climatic background: A case study of the Lower Eocene in the Dongying depression, China

Author information +
History +
PDF

Abstract

The sedimentary environment, formation conditions, sedimentary characteristics and the basin evolution model of high-frequency oscillatory lake in arid climatic background of the Lower Eocene in the Dongying depression were studied through the analysis of drilling cores, sporepollen, geochemistry and geophysics data. During the sedimentary period of the Eocene Ek 1–Es 4x formations, because of the frequent alternation between dry and wet climates in the arid climatic background and the gentle paleogeomorphology, the lake level and salinity of the Early Eocene Dongying depression frequently and rapidly increased and decreased, which is referred to as a high-frequency oscillatory lake. The sedimentation and distribution of sediments in this high-frequency oscillatory lake basin were controlled by the frequently alternating dry-wet climates. During periods with relatively wet climate, the seasonal floods and unstable rivers led to the formation of over-flooding lake deltas in the gentle slope belt, and fine-grained clastic sediments, with minor thin layers of gypsum-salt rocks in the sag belt. During the relatively arid climatic periods, sedimentation occurred mainly in the limited area of the sag belt with thick gypsum-salt rocks. Because of the impact of the salinity stratification of the lake water, these gypsum-salt rocks exhibit annular structural features. A sedimentary cycle of the oscillatory lake began with isochronous flood channels and ended with relatively thick gypsum rocks and salt rocks. The thickness of one oscillatory cycle is generally 4–20 m. The superposition of multiple sedimentary cycles of the oscillatory lake constitutes the overall vertical filling sequence of the high-frequency oscillatory lake basin.

Keywords

oscillatory lake / clastic sedimentation / chemical sedimentation / paleoclimate / Dongying depression / Lower Eocene

Cite this article

Download citation ▾
Jie Liu, Jian Wang, Yingchang Cao, Guoqi Song. Sedimentation in a continental high-frequency oscillatory lake in an arid climatic background: A case study of the Lower Eocene in the Dongying depression, China. Journal of Earth Science, 2017, 28(4): 628-644 DOI:10.1007/s12583-016-0635-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bracht-Flyr B., Istanbulluoglu E., Fritz S. C. A Hydro- Climatological Lake Classification Model and Its Evaluation Using Global Data. Journal of Hydrology, 2013, 486: 376-383.

[2]

Carroll A. R., Bohacs K. M. Lake-Type Controls on Petroleum Source Rock Potential in Nonmarine Basins. AAPG Bulletin, 2001, 85(6): 1033-1053.

[3]

Cecil C. B. Paleoclimate Controls on Stratigraphic Repetition of Chemical and Siliciclastic Rocks. Geology, 1990, 18(6): 533-536.

[4]

Chang H., An Z. S., Wu F., . A Rb/Sr Record of the Weathering Response to Environmental Changes in Westerly Winds across the Tarim Basin in the Late Miocene to the Early Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386: 364-373.

[5]

Chen B., Zhang C. M., Han D. K., . Characteristics of Lacustrine High-Resolution Sequence Stratigraphy under Arid Climate: A Case Study of Yuyang Formation (Late Cretaceous) in Southwest of Jianghan Basin. Acta Sedimentologica Sinica, 2007, 25(1): 21-28.

[6]

Chen J., An Z. S., Head J. Variation of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130 000 Years and Their Implications for Monsoon Paleoclimatology. Quaternary Research, 1999, 51(3): 215-219.

[7]

Chen L., Shen H. Y., Jia Y. L., . Environmental Change Inferred from Rb and Sr of Lacustrine Sediments in Huangqihai Lake, Inner Mongolia. Journal of Geographical Sciences, 2008, 18(3): 373-384.

[8]

Chivas A. R., De Deckker P., Shelley J. M. C. Strontium Conetent of Ostracods Indicates Lacustrine Palaeosalinity. Nature, 1985, 316: 251-253.

[9]

Chivas A. R., De Deckker P., Shelley J. M. C. Magnesium and Strontium in Non-marine Ostracod Shells as Indicators of Palaeosalinity and Palaeotemperature. Hydrobiologia, 1986, 143(1): 135-142.

[10]

Currie B. S. Sequence Stratigraphy of Nonmarine Jurassic–Cretaceous Rocks, Central Cordilleran Foreland-Basin System. Geological Society of American Bulletin, 1997, 109(9): 1206-1222.

[11]

Fandeur D., Juillot F., Morin G., . Synchrotron-Based Speciation of Chromium in an Oxisol from New Caledonia: Importance of Secondary Fe-oxyhydroxides. American Mineralogist, 2009, 94(5/6): 710-719.

[12]

Fisher J. A., David W., Nichols G. J., . A Quantitative Model for Deposition of Thin Fluvial Sand Sheets. Journal of the Geological Society, 2007, 164(1): 67-71.

[13]

Fu M. Z., Li Z., Xu X. W., . Sporopollen Analysis of Core B10 in the Southern Yellow Sea and the Reflected Characteristics of Climate Changes. Chinese Science Bulletin, 2003, 48(1): 42-48.

[14]

Giovanoli F. Tilzer M., Serruya C. Horizontal Transport and Sedimentation by Interflows and Turbidity Currents in Lake Geneva. Large Lakes-Ecological Structure and Function, 1990 Berlin: Springer-Verlag, 175-195.

[15]

Guo X. P., Wang N. W., Ding X. Z., . Discovery of Paleogene Sporopollen from the Matrix Strata of the Naij Tal Group-Complex in the Eastern Kunlun Orogenic Belt. Acta Geologica Sinica (English Edition), 2006, 80(4): 490-495.

[16]

Heydari E., Wade W. J., Anderson L. C. Depositional Environments, Organic Carbon Accumulation, and Solar-Forcing Cyclicity in Smackover Formation Lime Mudstones, Northern Gulf Coast. AAPG Bulletin, 1997, 81(5): 760-774.

[17]

Kristen I., Fuhrmann A., Thorpe J., . Hydrological Changes in Southern Africa over the Last 200 ka as Recorded in Lake Sediments from the Tswaing Impact Crater. South African Journal of Geology, 2007, 110(2/3): 311-326.

[18]

Kujaua A., Heimhofer U., Hochulic A. P., . Reconstructing Valanginian (Early Cretaceous) Mid-Latitude Vegetation and Climate Dynamics Based on Spore-Pollen Assemblages. Review of Palaeobotany and Palynology, 2013, 197: 50-69.

[19]

Lampe C., Song G. Q., Cong L. Z., . Fault Control on Hydrocarbon Migration and Accumulation in the Tertiary Dongying Depression, Bohai Basin, China. AAPG Bulletin, 2012, 96(6): 983-1000.

[20]

Lewis W. M. A Revised Classification of Lakes Based on Mixing. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40(10): 1779-1787.

[21]

Li, S. P., Ferguson, D. K., Wang, Y., et al., 2013. Climate Reconstruction Based on Pollen Analysis in Inner Mongolia, North China from 51 to 30.6 ka BP.Acta Geologica Sinica (English Edition), 87(5): 1444–1459

[22]

Liu D. C., Gao X., Liu E. F., . The Depositional Environment at Shuidonggou Locality 2 in Northwest China at ~72–18 ka BP. Acta Geologica Sinica, 2013, 86(6): 1539-1546.

[23]

Mathewes R. W., King M. Holocene Vegetation, Climate, and Lake-Level Changes in the Interior Douglas-fir Biogeoclimatic Zone, British Columbia. Canadian Journal of Earth Sciences, 1989, 26(9): 1811-1825.

[24]

Midgley J. J., Harris C., Harington A., . Geochemical Perspective on Origins and Consequences of Heuweltjie Formation in the Southwestern Cape, South Africa. South African Journal of Geology, 2012, 115(4): 577-588.

[25]

North C. P., Warwick G. L. Fluvial Fans: Myths, Misconceptions, and the End of the Terminal-Fan Model. Journal of Sedimentary Research, 2007, 77(9): 693-701.

[26]

Pederson J. L. Holocene Paleolakes of Lake Canyon, Colorado Plateau: Paleoclimate and Landscape Response from Sedimentology and Allostratigraphy. Geological Society of America Bulletin, 2000, 112(1): 147-158.

[27]

Reheis M. C., Reynolds R. L., Goldstein H., . Late Quaternary Eolian and Alluvial Response to Paleoclimate, Canyonlands, Southeastern Utah. Geological Society of America Bulletin, 2005, 117(7/8): 1051-1069.

[28]

Rippey B., Doe S., Girvin J., . A preliminary Classification of Lake Types in Northern Ireland. Freshwater Forum, 2001, 16: 39-64.

[29]

Romero A. M., Philp R. P. Organic Geochemistry of the Woodford Shale, Southeastern Oklahoma: How Variable can Shales be. AAPG Bulletin, 2012, 96(3): 493-517.

[30]

Sarg J. F., Suriamin N., Tänavsuu-Milkeviciene K., . Lithofacies, Stable Isotopic Composition, and Stratigraphic Evolution of Microbial and Associated Carbonates, Green River Formation (Eocene), Piceance Basin, Colorado. AAPG Bulletin, 2013, 97(11): 1937-1966.

[31]

Shanley K. W., McCabe P. J. Perspective on the Sequence Stratigraphy of Continental Strata. AAPG Bulletin, 1994, 78(4): 544-568.

[32]

Vital H., Stattegger K., Garbe-Schlnberg C. D. Composition and Trace-Element Geochemistry of Detrital Clay and Heavy-Mineral Suites of the Lowermost Amazon Fever: A Provenance Study. Journal of Sedimentary Research, 1999, 69(3): 563-575.

[33]

Wang D. N. Late Eocene Sporopollen and Paleoclimate, Paleoenvironment of the Yuanqu Basin, Shanxi. Continental Dynamics, 1999, 4(2): 29-38.

[34]

Wang F. Y., Song C. Q., Cheng G. G., . Paleoclimate Reconstruction by Adopting the Pollen Climate Response Surface Model to Analysis the Cha Su Qi Deposition Section. Botanica Sinica, 1998, 40(11): 1067-1074.

[35]

Webster R. E., Chebli G. A., Fischer J. F. General Levalle Basin, Argentina: A Frontier Lower Cretaceous Rift Basin. AAPG Bulletin, 2004, 88(5): 627-652.

[36]

Wu F. L., Fang X. M., Miao Y. F., . Environmental Indicators from Comparison of Sporopollen in Early Pleistocene Lacustrine Sediments from Different Climatic Zones. Chinese Science Bulletin, 2010, 55(26): 2981-2988.

[37]

Wu W., Lin C. S., Zhou X. H., . Paleoclimate Evolution and Its Influence on Lake Level Changes of Paleogene Dongying Epoch in Liaodong Bay, East China. Journal of China University of Petroleum, 2012, 36(1): 33-39.

[38]

Wu Z. P., Zhang L., Li W., . Early Paleogene (Ek–Es4x) Structure Framework Restoration of the Dongying Sag. Journal of China University of Petroleum, 2012, 36(1): 13-19.

[39]

Xiao J. Y., Lu H. B., Zhou W. J., . Evolution of Vegetation and Climate since the Last Glacial Maximum Recorded at Dahu Peat Site, South China. Science in China Series D: Earth Sciences, 2007, 50(8): 1209-1217.

[40]

Xu H., Liu B., Wu F. Spatial and Temporal Variations of Rb/Sr Ratios of the Bulk Surface Sediments in Lake Qinghai. Geochemical Transactions, 2010, 11 3

[41]

Xu J. S., Sun Y. Z. Sporopollen Assemblage Characteristics of Surface Sediments in Offshore Area of Western Bohai Sea. Marine Science Bulletin, 1999, 1(1): 83-90.

[42]

Xu L., Cao Y. C., Wang Y. Z., . Genetic Model of Salt-Gypsum Rock of Paleogene in Dongying Depression and Its Relationship with Hydrocarbon Reservoir. Journal of China University of Petroleum, 2008, 32(3): 30-39.

[43]

Yu Z. C., Ito E., Engstrom D. R., . A 2100-Year Trace-Element and Stable-Isotope Record at Decadal Resolution from Rice Lake in the Northern Great Plains, USA. The Holocene, 2002, 12(5): 605-617.

[44]

Yuan J. Paleogene Sedimentary Characteristics of Flood-Overlake in the East China—An Example in South of Jiyang Depression. Journal of Mineral Petrology, 2005, 25(2): 99-103.

[45]

Zambito IV J. J., Benison K. C. Extremely High Temperatures and Paleoclimate Trends Recorded in Permian Ephemeral Lake Halite. Geology, 2013, 41(5): 587-590.

[46]

Zhang C. J., Feng Z. D., Yang Q. L., . Holocene Environmental Variations Recorded by Organic-Related and Carbonate Related Proxies of the Lacustrine Sediments from Bosten Lake, Northwest China. The Holocene, 2010, 20(3): 1-11.

[47]

Zhang P., Miao Y. F., Zhang Z. Y., . Late Cenozoic Sporopollen Records in the Yangtze River Delta, East China and Implications for East Asian Summer Monsoon Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 153-165.

[48]

Zhu H. T., Zeng H. L., Liu K. Y. A Quantitative Simulation Study of Asymmetrical Tectonic Subsidence Control on Non-Synchronous Sequence Stacking Patterns of Eocene Lacustrine Sediments in Bohai Bay Basin, China. Sedimentary Geology, 2013, 294: 328-341.

[49]

Zhu X. M., Liu Y., Fang Q., . Formation and Sedimentary Model of Shallow Delta in Large-Scale Lake: Example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin. Earth Science Frontiers, 2012, 19(1): 89-99.

[50]

Zou C. N., Yang Z., Cui J. W., . Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 2013, 40(1): 15-27.

[51]

Zou C. N., Zhao W. Z., Zhang X. Y., . Formation and Distribution of Shallow-Water Deltas and Central Basin Sandbodies in Large Open Depression Lake Basins. Acta Geologica Sinica, 2008, 82(2): 813-825.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/