The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: Evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China

Wei Wei , Dan Wang , Da Li , Hongfei Ling , Xi Chen , Guangyi Wei , Feifei Zhang , Xiangkun Zhu , Bin Yan

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 233 -241.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 233 -241. DOI: 10.1007/s12583-015-0657-1
Article

The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: Evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China

Author information +
History +
PDF

Abstract

Cryogenian Datangpo Formation was deposited during the interglacial time between the Sturtian and Marinoan ice ages. We studied nitrogen isotope compositions and contents of Mo of the black shales from the basal Datangpo Formation in northeastern Guizhou, South China, for an attempt to reconstruct the marine redox change and nitrogen cycle during the interglacial time. Based on lithostratigraphy as well as geochemical profiles, the basal black shales can be divided into four intervals: Interval 1 has the lowest δ15N value (+5.0‰); in interval 2, δ15N values vary between +6.4‰ and +7.4‰ (the first peak); interval 3 records stable values of δ15N around +6‰; and interval 4 is characterized by its higher δ15N values, between +6.7‰ and +7.8‰ (the second peak). The values of enrichment factor of Mo decrease from 56.8 to 2.6 with the ascending stratigraphic trend. It indicated that immediately after the Sturtian glaciations, the marine seawater above the transitional zone between the shelf to slope of the southern margin of the Yangtze Platform was stratified, with shallow seawater being oxic but deep water being sulfidic. Subsequently, high denitrification rates prevailed in expanded suboxic areas in spite of a short emergence of an oxic condition in the surface seawater, and the deep seawaters were still anoxic or even euxinic.

Keywords

nitrogen isotope / molybdenum content / Early Cryogenian interglacial time / black shale / Datangpo Formation / Yangtze Platform / South China

Cite this article

Download citation ▾
Wei Wei, Dan Wang, Da Li, Hongfei Ling, Xi Chen, Guangyi Wei, Feifei Zhang, Xiangkun Zhu, Bin Yan. The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: Evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China. Journal of Earth Science, 2016, 27(2): 233-241 DOI:10.1007/s12583-015-0657-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ader M., Sansjofre P., Halverson G., Busigny V., Trindade R., Kunzmann M., Nogueira A. Ocean redox Redox structure Structure across the Late Neoproterozoic Oxygenation Event: A nitrogen Nitrogen isotope Isotope perspectivePerspective. Earth & Planetary Science Letters, 2014, 364: 1-13.

[2]

Algeo T.J., Maynard J.B. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 2004, 206: 289-318.

[3]

Altabet M. A. Constraints on Oceanic N Balance/ Imbalance from Sedimentary N-15 Records. Biogeosciences, 2007, 4: 75-86.

[4]

Böning P., Brumsack H. J., Böttcher M. E., . Geochemistry of Peruvian near-Surface Sediments. Geochimica et Cosmochimica Acta, 2004, 68: 4429-4451.

[5]

Bostick B. C., Fendorf S., Helz G. R. Differential Adsorption of Molybdate and Tetrathiomolybdate on Pyrite (FeS2). Environmental Science & Technology, 2003, 37(2): 285-291.

[6]

Broecker W. S., Peng T. H. Tracers in the Sea, 1982 Palisades, N. Y.: Eldigio Press, Columbia University, 689.

[7]

Calvert S. E., Pedersen T. F. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 1993, 113(1–2): 67-88.

[8]

Canfield D. E., Raiswell R., Westrich J. T., Reaves C. M., . The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 1986, 54: 149-155.

[9]

Casciotti K. L., Sigman D. M., Ward B. B. Linking Diversity and Stable Isotope Fractionation in Ammonia- Oxidizing Bacteria. Geomicrobiology Journal, 2003, 20(4): 335-353.

[10]

Chen X., Li D., Ling H., . Carbon and Sulfur Isotopic Compositions of Basal Datangpo Formation, Northern Guizhou, South China: Implications for Depositional Environment. Progress in Natural Science, 2008, 18: 421-429.

[11]

Condon D., Zhu M. Y., Bowring S., . U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308(5718): 95-98.

[12]

Cremonese L. G. A., Zhou S., . Nitrogen and Organic Carbon Isotope Stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian Transition in South China. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 398(SI): 165-186.

[13]

Cremonese L., Zhou S., Struck G., . Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 2013, 225: 148-165.

[14]

Crusius J., Calvert S., Pedersen T., . Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 1996, 145(1–4): 65-78.

[15]

Erickson B. E., Helz G. R. Molybdenum(VI) Speciation in Sulfidic Waters: Stability and Lability of Thiomolybdates. Geochimica et Cosmochimica Acta, 2000, 64(7): 1149-1158.

[16]

Feng L., Chu X., Huang J., . Reconstruction of Paleo-Redox Conditions and Early Sulfur Cycling during Deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 2010, 18: 632-637.

[17]

Fogel M. L., Cifuentes L. A. Engel M. H., Macko S. A. Isotope Fractionation during Primary Production. Organic Geochemistry, 1993 New York: Plenum Press, 73-98.

[18]

Francis C. A., Beman J. M., Kuypers M. M. New Processes and Players in the Nitrogen Cycle: The Microbial Ecology of Anaerobic and Archaealammonia Oxidation. the ISME Journal, 2007, 1: 19-27.

[19]

Galbraith E. D., Sigman S. M., Robinson R. S., . Capone D., Bronk D., Mulholland M., Carpenter E., . Past Changes in the Marine Nitrogen Cycle. Nitrogen in the Marine Environment, 2008

[20]

Elsevier Helz G. R., Charnock J. M., Mosselmans J. F. W., . Mechanism of Molybdenum Removal from the Sea and Its Concentration in Black Shales: EXAFS Evidence. Geochimica et Cosmochimica Acta, 1996, 60(19): 3631-3642.

[21]

Hild E., Brumsack H. J. Major and Minor Element Geochemistry of Lower Aptian Sediments from the NW German Basin (core Hoheneggelsen KB 40). Cretaceous Research, 1998, 19: 615-633.

[22]

Hoffman P. F., Schrag D. P. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 2002, 14(3): 129-155.

[23]

Hoffman P. F., Kaufman A. J., Halverson G. P., . A Neoproterozoic Snowball Earth. Science, 2010, 281: 1342-1346.

[24]

Holland H. D. Metals in Black Shales: A Reassessment. Economic Geology, 1979, 74: 676-1680.

[25]

Huerta-Diaz M. A., Morse J. W. Pyritization of Trace Metals in Anoxic Marine Sediments. Geochimica et Cosmochimica Acta, 1992, 56(7): 2681-2702.

[26]

Jiang G., Kennedy M.J., Christie-Blick N. Stable Isotopic Evidence for Methane Deeps in Neoproterozoic Postglacial Cap Carbonates. Nature, 2003, 426: 822-826.

[27]

Jiang G., Sohl L. E., Christie-Blick N. Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic Implications. Geology, 2003, 31: 917-920.

[28]

Kikumoto R., Tahata M., Nishizawa M., . Nitrogen Isotope Chemostratigraphy of the Ediacaran and Early Cambrian Platform Sequence at Three Gorges, South China. Gondwana Research., 2014, 25: 1057-1069.

[29]

Kump L. R. Interpreting Carbon-Isotope Excursions: Strangelove Oceans. Geology, 1991, 19: 299-302.

[30]

Li C., Love G. D. Evidence for a Redox Stratified Cryogenian Marine Basin, Datangpo Formation, South China. Earth and Planetary Science Letters, 2012, 331: 246-256.

[31]

Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328: 80-83.

[32]

Liu K. K., Kaplan I. R. Variation of Nitrogen Isotope Fractionation during Denitrification and Nitrogen Isotope Balance in the Ocean. EOS, 1988, 69 1098.

[33]

Mariotti A., Mariotti F., Amarger N., . Fractionnements Isotopiques de L’azote Lors des Processus d’absorption des Nitrates et de Fixation de l’azote Atmospherique par les Plantes. Physiol. Ve’g., 1980, 18: 163-181.

[34]

McLennan S. M. Rare-Earth Elements in Sedimentary- Rocks-Influence of Provenance and Sedimentary Processes. Review in Mineralogy, 1989, 21: 169-200.

[35]

McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry Geophysics Geosystems, 2: part. no.-2000GC000109

[36]

Meyers P. A., Doose H. Sources, Preservation, and Thermal Maturity of Organic Matter in Pliocene-Pleistocene Organic-Carbon-Rich Sediments of the Western Mediterranean Sea. Proceedings, Ocean Drilling Program. Scientific Results, 1999, 161: 383-390.

[37]

Ohkouchi N., Nakajima Y., Okada H., . Biogeochemical Processes in the Saline Meromictic Lake Kaiike, Japan: Implications from Molecular Isotopic Evidences of Photosynthetic Pigments. Environmental Microbiology, 2005, 7(7): 1009-1116.

[38]

Pennock J. R., Velinsky D. V., Ludlam J. M., . Isotopic Fractionation of Ammonium and Nitrate during Uptake by Skeletonema Costatum: Implications for 15N Dynamics under Bloom Conditions. Limn. Oceanography, 1996, 41: 451-459.

[39]

Pinti D. L., Hashizume K. Golding S. D., Glikson M. Early Life Record from Nitrogen Isotopes. Earliest Life on Earth: Habitats, Environments and Methods of Detection, 2011

[40]

Piper D. Z. Seawater as the Source of Minor Elements in Black Shales, Phosphorites and Other Sedimentary Rocks. Chemical Geology, 1994, 114: 95-114.

[41]

Planavsky N. J., Rouxel O. J., Bekker A., . The Evolution of the Marine Phosphate Reservoir. Nature, 2010, 467: 1088-1090.

[42]

Prokopenko M. G., Hammond D. E., Berelson W. M., . Nitrogen Cycling in the Sediments of Santa Barbara Basin and Eastern Tropical North Pacific: Nitrogen Isotopes, Diagenesis and Possible Chemosymbiosis between Two Lithotrophs (Thioploca and Anammox)—Riding on a Glider. Earth and Planetary Science Letters, 2006, 242: 186-204.

[43]

Redfield A. C. The Influence of Organisms on the Composition of Sea Water. The Sea, 1963, 26-77.

[44]

Rimmer S. M. Geochemical Paleoredox Indicators in Devonian–Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 2004, 206: 373-391.

[45]

Scott C., Lyons T. W. Contrasting Molybdenum Cycling and Isotopic Properties in Euxinic versus Non-Euxinic Sediments and Sedimentary Rocks: Refining the Paleoproxies. Chemical Geology, 2012, 324(SI): 19-27.

[46]

Sigman D. M., Karsh K. L., Casciotti K. L. Steele J. H., Thorpe S. A., Turekian K. K. Nitrogen Isotopes in the Ocean. Encyclopedia of Ocean Sciences, 2009 Oxford: Academic Press, 40-54.

[47]

Thomazo C., Ader A., Philippot P. Extreme 15N-Enrichments in 2.72 Gyr Old Sediments. Evidents for a Turning Point in the Nitrogen Cycle. Geobiology, 2011, 9: 107-120.

[48]

Tribovillard N., Algeo T. J., Lyons T., . Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 2006, 232: 12-32.

[49]

Tribovillard N., Desprairies A., Lallier-Vergès E., . Geochemical Study of Organic-Rich Cycles from the Kimmeridge Clay Formation of Yorkshire (G. B.): Productivity vs. Anoxia. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108: 165-181.

[50]

Tribovillard N., Riboulleau A., Lyons T., . Enhanced Trapping of Molybdenum by Sulfurized Marine Organic Matter of Marine Origin in Mesozoic Limestones and Shales. Chemical Geology, 2004, 213(4): 385-401.

[51]

Van der Weijden C. H. Pitfalls of Normalization of Marine Geochemical Data Using a Common Divisor. Marine Geology, 2002, 184: 167-187.

[52]

Vine J. D., Tourtelot E. B. Geochemistry of Black Shale Deposits—A Summary Report. Economic Geology, 1970, 65: 253-272.

[53]

Vorlicek T.P., Helz G.R. Catalysis by Mineral Surfaces: Implications for Mo Geochemistry in Anoxic Environments. Geochimica et Cosmochimica Acta, 2002, 66(21): 3679-3692.

[54]

Vorlicek T. P., Kahn M. D., Kasuya Y., . Capture of Molybdenum in Pyrite-Forming Sediments: Role of Ligand- Induced Reduction by Polysulfides. Geochimica et Cosmochimica Acta, 2004, 68(3): 547-556.

[55]

Wada E., Hattori A. Nitrogen in the Sea: Forms, Abundances, and Rate Processes, 1991 Florida: CRC Press INC

[56]

Wada E., Kadonaga T., Matsuo S. 15N Abundance in Nitrogen of Naturally Occurring Substances and Global Assessment of Denitrification from Isotopic Viewpoint. Geomicrobiology Journal, 1975, 9: 139-148.

[57]

Wang X., Shi X. T. D., . Nitrogen Isotope Evidence for Redox Variations at the Ediacaran-Cambrian Transition in South China. Journal of Geology, 2013, 121(5): 489-502.

[58]

Xu L. G., Lehmann B., Mao J. W., . Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 2012, 318: 45-59.

[59]

Zhang Q. R., Chu X. L., Bahlburg H., . Stratigraphic Architecture of the Neoproterozoic Glacial Rocks in the “Xiang-Qian-Gui” Region of the Central Yangtze Block, South China. Progress in Natural Science, 2003, 13(10): 783-787.

[60]

Zhang S. H., Jiang G. Q., Han Y. G. The Age of the Nantuo Formation and Nantuo Glaciation in South China. Terra Nova, 2008, 20(4): 289-294.

[61]

Zhang S. H., Jiang G. Q., Zhang J. M., . U-Pb Sensitive High-Resolution Ion Microprobe Ages from the Doushantuo Formation in South China: Constraints on Late Neoproterozoic Glaciations. Geology, 2005, 33(6): 473-476.

[62]

Zhang X., Sigman D. M., Morel F. M., . Nitrogen Isotope Fractionation by Alternative Nitrogenases and Past Ocean Anoxia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4782-4787.

[63]

Zheng Y., Anderson R. F. v., Geen A., . Authigenic Molybdenum Formation in Marine Sediments: a Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 2000, 64(24): 4165-4178.

[64]

Zhou C. M., Tucker R., Xiao S., . New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 2004, 32(5): 437-440.

[65]

Zhu M. Y., Strauss H., Shields G. A. From Snowball Earth to the Cambrian Bioradiation: Calibration of Ediacaran- Cambrian Earth History in South China. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254(1–2): 1-6.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/