Subsurface structures at the Chang’e-3 landing site: Interpretations from orbital and in-situ imagery data

Le Qiao, Zhiyong Xiao, Jiannan Zhao, Long Xiao

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 707-715.

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 707-715. DOI: 10.1007/s12583-015-0655-3
Article

Subsurface structures at the Chang’e-3 landing site: Interpretations from orbital and in-situ imagery data

Author information +
History +

Abstract

The Chang’e-3 (CE-3) spacecraft successfully landed on one of the youngest mare surfaces on the Moon in December 2013. The Yutu rover carried by CE-3 was equipped with a radar system that could reveal subsurface structures in unprecedented details, which would facilitate understanding regional and global evolutionary history of the Moon. Based on regional geology, cratering scaling, and morphological study, here we quantify the subsurface structures of the landing site using high-resolution orbital and in-situ imagery data. Three layers of lunar regolith, two layers of basalt units, and one layer of ejecta deposits are recognized at the subsurface of the landing site, and their thicknesses are deduced based on the imagery data. These results could serve as essential references for the on-going interpretation of the CE-3 radar data. The ability to validate our theoretical subsurface structure using CE-3 in-situ radar observations will improve the methods for quantifying lunar subsurface structure using crater morphologies and scaling.

Keywords

Chang’e-3 / subsurface structure / impact cratering / Lunar Penetrating Radar / lunar exploration

Cite this article

Download citation ▾
Le Qiao, Zhiyong Xiao, Jiannan Zhao, Long Xiao. Subsurface structures at the Chang’e-3 landing site: Interpretations from orbital and in-situ imagery data. Journal of Earth Science, 2016, 27(4): 707‒715 https://doi.org/10.1007/s12583-015-0655-3

References

Bugiolacchi R., Guest J. Compositional and Temporal Investigation of Exposed Lunar Basalts in the Mare Imbrium Region. Icarus, 2008, 197(1): 1-18.
CrossRef Google scholar
Carlson R. H., Jones G. D. Distribution of Ejecta from Cratering Explosions in Soils. Journal of Geophysical Research, 1965, 70(8): 1897-1910.
CrossRef Google scholar
Chen S. B., Meng Z. G., Cui T. F., . Geologic Investigation and Mapping of the Sinus Iridum Quadrangle from Clementine, SELENE, and Chang’e-1 Data. Science China Physics, Mechanics and Astronomy, 2010, 53(12): 2179-2187.
CrossRef Google scholar
Cooper H. F. Roddy D. J., Pepin R. O., Merrill R. B. A Summary of Explosion Cratering Phenomena Relevant to Meteor Impact Events. Impact and Explosion Cratering: Planetary and Terrestrial Implications, 1977, 11-44.
Fa W. Z., Liu T. T., Zhu M. H., . Regolith Thickness over Sinus Iridum: Results from Morphology and Size-Frequency Distribution of Small Impact Craters. Journal of Geophysical Research: Planets, 2014, 119(8): 1914-1935.
Giguere T. A., Taylor G. J., Hawke B. R., . The Titanium Contents of Lunar Mare Basalts. Meteoritics & Planetary Science, 2000, 35(1): 193-200.
CrossRef Google scholar
Golombek M. P., Plescia J. B., Franklin B. J. Faulting and Folding in the Formation of Planetary Wrinkle Ridges. Proceedings of the Lunar and Planetary Science, 1991, 679-693.
Haruyama J., Hara S., Hioki K., . Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations. Proceedings of 43rd Lunar and Planetary Science Conference, 2012
Hiesinger H., Head J. W., . Jolliff B. L., Wieczorek M. A., Shearer C. K., . New Views of Lunar Geosciences: An Introduction and Overview. New View of the Moon, 2006, 28-29.
Hiesinger H., Jaumann R., Neukum G., . Ages of Mare Basalts on the Lunar Nearside. Journal of Geophysical Research: Planets, 2000, 105(E12): 29239-29275.
CrossRef Google scholar
Hiesinger H., Head J. W., Wolf U., . Lunar Mare Basalt Flow Units: Thicknesses Determined from Crater Size-Frequency Distributions. Geophysical Research Letters, 2002, 29(8): 891-894.
CrossRef Google scholar
Lawrence D. J., Feldman W. C., Barraclough B. L., . Thorium Abundances on the Lunar Surface. Journal of Geophysical Research: Planets, 2000, 105(E8): 20307-20331.
CrossRef Google scholar
Liu T. T., Fa W. Z., Zhu M. H., . Regolith Thickness Estimation over Sinus Iridum Using Morphology and Size-Frequency Distribution of Small Craters from LROC Images. Proceedings of 45th Lunar and Planetary Science Conference, Woodlands, 2014, 1347.
Liu Z. Q., Di K. C., Peng M., . High Precision Landing Site Mapping and Rover Localization for Chang’e-3 Mission. Science China Physics, Mechanics & Astronomy, 2014, 58(1): 1-11.
Lucey P. G. Mineral Maps of the Moon. Geophysical Research Letters, 2004, 31 8 L08701
CrossRef Google scholar
Lu Y., Basilevsky A., Abdrakhimov A. Local Geology of Chang’e-3 Landing Site from Analysis of the CE-3 Descent Camera and LROC NAC Images. Proceedings of 45th Lunar and Planetary Science Conference, 2014
McGetchin T. R., Settle M., Head J. W. Radial Thickness Variation in Impact Crater Ejecta: Implications for Lunar Basin Deposits. Earth and Planetary Science Letters, 1973, 20(2): 226-236.
CrossRef Google scholar
Melosh H. J. Impact Cratering: A Geologic Process. Oxford University Press, 1989
Morota T., Haruyama J., Ohtake M., . Timing and Characteristics of the Latest Mare Eruption on the Moon. Earth and Planetary Science Letters, 2011, 302(3/4): 255-266.
CrossRef Google scholar
Nakamura Y., Dorman J., Duennebier F., . Shallow Lunar Structure Determined from the Passive Seismic Experiment. The Moon, 1975, 13(1–3): 57-66.
CrossRef Google scholar
Oberbeck V. R., Quaide W. L. Estimated Thickness of a Fragmental Surface Layer of Oceanus Procellarum. Journal of Geophysical Research, 1967, 72(18): 4697-4704.
CrossRef Google scholar
Otake H., Ohtake M., Hirata N. Lunar Iron and Titanium Abundance Algorithms Based on SELENE (Kaguya) Multiband Imager Data. Proceedings of 43rd Lunar and Planetary Science Conference, 2012
Ono T., Kumamoto A., Nakagawa H., . Lunar Radar Sounder Observations of Subsurface Layers under the Nearside Maria of the Moon. Science, 2009, 323(5916): 909-912.
CrossRef Google scholar
Papike J. J., Hodges F. N., Bence A. E., . Mare Basalts: Crystal Chemistry, Mineralogy, and Petrology. Reviews of Geophysics, 1976, 14(4): 475-540.
CrossRef Google scholar
Pike R. J. Schroeter’s Rule and the Modification of Lunar Crater Impact Morphology. Journal of Geophysical Research, 1967, 72(8): 2099-2106.
CrossRef Google scholar
Qiao L., Xiao L., Zhao J. N., . Geological Features and Evolution History of Sinus Iridum, the Moon. Planetary and Space Science, 2014, 101: 37-52.
CrossRef Google scholar
Quaide W. L., Oberbeck V. R. Thickness Determinations of the Lunar Surface Layer from Lunar Impact Craters. Journal of Geophysical Research, 1968, 73(16): 5247-5270.
CrossRef Google scholar
Schaber G. G. Lava Flows in Mare Imbrium: Geologic Evaluation from Apollo Orbital Photography. Proceedings of 4th Lunar Science Conference, 1973, 73-92.
Shkuratov Y. G., Bondarenko N. V. Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data. Icarus, 2001, 149(2): 329-338.
CrossRef Google scholar
Simmons G. Final Report on the Surface Electrical Properties Experiment, 1974
Snyder J. P. Map Projections—A Working Manual. US Government Printing, 1987
Spudis P., Pieters C., . Heiken G. H., Vaniman D. T., French B. M., . Global and Regional Data about the Moon. Lunar Sourcebook, 1991, 609-632.
Stöffler D., Gault D. E., Wedekind J., . Experimental Hypervelocity Impact into Quartz Sand: Distribution and Shock Metamorphism of Ejecta. Journal of Geophysical Research, 1975, 80(29): 4062-4077.
CrossRef Google scholar
Stöffler D., Ryder G. Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System. Space Science Reviews, 2001, 96(1–4): 9-54.
CrossRef Google scholar
Talwani M., Thompson G., Dent B., . Traverse Gravimeter Experiment. Apollo 17 Preliminary Science Report, 1973
Thomson B. J., Grosfils E. B., Bussey D. B. J., . A New Technique for Estimating the Thickness of Mare Basalts in Imbrium Basin. Geophysical Research Letters, 2009, 36 12 L12201
CrossRef Google scholar
Wu Y. Z., Head J. W., Pieters C. M., . Regional Geology of the Chang’e-3 Landing Zone. Proceedings of 45th Lunar and Planetary Science Conference, Woodlands, USA, 2014
Xiao L. China’s Touch on the Moon. Nature Geoscience, 2014, 7(6): 391-392.
CrossRef Google scholar
Xiao L., Zhu P. M., Fang G. Y., . A Young Multilayered Terrane of the Northern Mare Imbrium Revealed by Chang’e-3 Mission. Science, 2015, 347: 1226-1229.
CrossRef Google scholar
Zhao J. N., Huang J., Qiao L., . Geologic Characteristics of the Chang’E-3 Exploration Region. Science China Physics, Mechanics and Astronomy, 2014, 57(3): 569-576.
CrossRef Google scholar
Zhao N., Zhu P. M., Yang K. S., . The Preliminary Processing and Analysis of LPR Channel-2B Data from Chang’e-3. Science China Physics, Mechanics & Astronomy, 2014, 57(12): 2346-2353.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/