The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China

Zhenbing She , Fanyan Yang , Wei Liu , Luhua Xie , Yusheng Wan , Chao Li , Dominic Papineau

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 297 -316.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 297 -316. DOI: 10.1007/s12583-015-0654-4
Article

The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China

Author information +
History +
PDF

Abstract

The Lomagundi-Jatuli Event (LJE) is one of the largest and earliest positive carbon isotope excursions preserving δ13Ccarb values between +5 and +16‰ in Paleoproterozoic carbonates worldwide. However, the duration, amplitude and patterns of these excursions remain poorly constrained. The 2.14–1.83 Ga Hutuo Group in the North China Craton is a >10 km thick volcano- sedimentary sequence, including >5 km thick well-preserved carbonates that were deposited in supra- tidal to sub-tidal environments. C-O isotopic and elemental analyses of 152 least altered samples of the carbonates revealed a three-stage δ13C evolution. It began with an exclusively positive δ13Ccarb (+1.3 to + 3.4‰) stage in the ~2.1 Ga carbonate in the Dashiling and Qingshicun Formations, followed by a transition from positive values to oscillating positive and negative values in ~3 000 m thick carbonates of the Wenshan, Hebiancun, Jianancun, and Daguandong Formations, and end with exclusively negative δ13Ccarb values preserved in > 500 m thick dolostones of the Huaiyincun and Beidaxing Formations. It appears that much of the LJE, particularly those extremely positive δ13Ccarb signals, was not recorded in the Hutuo carbonates. The exclusively positive δ13Ccarb values (+1.3 to + 3.4‰) preserved in the lower formations likely correspond to the end of the LJE, whereas the subsequent two stages reflect the aftermath of the LJE and the onset of Shunga-Francevillian event (SFE). The present data point to an increased influence of oxygen on the carbon cycle from the Doucun to the Dongye Subgroups and demonstrate that the termination of the LJE in the North China Craton is nearly simultaneous with those in Fennoscandia and South Africa.

Keywords

Paleoproterozoic / Lomagundi-Jatuli event / Hutuo Group / carbon isotope / carbonate

Cite this article

Download citation ▾
Zhenbing She, Fanyan Yang, Wei Liu, Luhua Xie, Yusheng Wan, Chao Li, Dominic Papineau. The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China. Journal of Earth Science, 2016, 27(2): 297-316 DOI:10.1007/s12583-015-0654-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai J. The Early Precambrian Geology of Wutaishan, 1986 Tianjin: Tianjin Science and Technology Press, 475.

[2]

Baker A. J., Fallick A. E. Evidence from Lewisian Limestones for Isotopically Heavy Carbon in Two-Thousand-Million-Year-Old Sea Wate, 1989, 337: 352-354.

[3]

Baker A. J., Fallick A. E. eavy Carbon in Two-Billion-Year-Old Marbles from Lofoten-Vester?len, Norway: Implications for the Precambrian Carbon Cycle. Geochimica et Cosmochimica Acta, 1989, 53: 1111-1115.

[4]

Bathurst R. G. Carbonate Sediments and Their Diagenesis. Developments in Sedimentology, 1972 Amsterdam: Elsevier, 658.

[5]

Bekker A., Karhu J. A., Eriksson K. A., . Chemostratigraphy of Paleoproterozoic Carbonate Successions of the Wyoming Craton: Tectonic Forcing of Biogeochemical Change?. Precambrian Research, 2003, 120: 279-325.

[6]

Bekker A., Karhu J. A., Kaufman A. J. Carbon Isotope Record for the Onset of the Lomagundi Carbon Isotope Excursion in the Great Lakes Area, North America. Precambrian Research, 2006, 148: 145-180.

[7]

Bekker A., Kaufman A. J., Karhu J. A., . Evidence for Paleoproterozoic Cap Carbonates in North America. Precambrian Research, 2005, 137: 167-206.

[8]

Bickle M. J., Chapman H. J., Ferry J. M., . Fluid Flow and Diffusion in the Waterville Limestone, South-Central Maine: Constraints from Strontium, Oxygen and Carbon Isotope Profiles. Journal of Petrology, 1997, 38: 1489-1512.

[9]

Bickle M. J., Chapman H. J., Wickham S. M., . Strontium and Oxygen Isotope Profiles Across Marble- Silicate Contacts, Lizzies Basin, East Humboldt Range, Nevada: Constraints on Metamorphic Permeability Contrasts and Fluid Flow. Contributions to Mineralogy and Petrology, 1995, 121: 400-413.

[10]

Boulvais P., Fourcade S., Gruau G., . Persistence of Pre-Metamorphic C and O isotopic Signatures in Marbles Subject to Pan-African Granulite-facies Metamorphism and U–Th Mineralization (Tranomaro, Southeast Madagascar). Chemical Geology, 1998, 150: 247-262.

[11]

Brasier M. D., Lindsay J. F. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 2010, 26: 555-558.

[12]

Deer W. A., Howie R. A., Zussman J. An Introduction to the Rock-forming Minerals, 1992 London: Longman, 696.

[13]

Dongye M. The Early-Middle Precambrian Phosphate Deposits in North China. Journal of Changchun University of Earth Science, 1989, 19: 181-186.

[14]

Du L. L., Yang C. H., Ren L. D., . Petrology, Geochemistry and Petrogenesis of the Metabasalts of the Hutuo Group, Wutai Mountains, Shanxi, China. Geological Bulletin of China, 2009, 28: 867-876.

[15]

Du L., Yang C., Guo J., . The Age of the Base of the Paleoproterozoic Hutuo Group in the Wutai Mountains Area, North China Craton: SHRIMP Zircon U-Pb Dating of Basaltic Andesite. Chinese Science Bulletin, 2010, 55: 1782-1789.

[16]

Du L., Yang C., Wang W., . The Re-examination of the Age and Stratigraphic Subdivision of the Hutuo Group in the Wutai Mountains Area, North China Craton: Evidences from Geology and Zircon U-Pb Geochronology. Acta Petrologica Sinica, 2011, 27: 1037-1055.

[17]

Du L., Yang C., Wang W., . Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2137 Ma Huangjinshan A-type Granite Porphyry in the Wutai area. Journal of Asian Earth Sciences, 2013, 72: 190-202.

[18]

Emrich K., Ehhalt D. H., Vogel J. C. Carbon Isotope Fractionation during the Precipitation of Calcium Carbonate. Earth and Planetary Science Letters, 1970, 8: 363-371.

[19]

Gaucher C., Sial A. N., Ferreira V. P., . Chemostratigraphy of the Cerro Victoria Formation (Lower Cambrian, Uruguay): Evidence for Progressive Climate Stabilization across the Precambrian–Cambrian Boundary. Chemical Geology, 2007, 237: 28-46.

[20]

Guerrera A., Peacock S. M., Knauth L. P. Large 18O and 13C Depletions in Greenschist Facies Carbonate Rocks, Western Arizona. Geology, 1997, 25: 943-946.

[21]

Guo H., Du Y., Kah L. C., . Isotopic Composition of Organic and Inorganic Carbon from the Mesoproterozoic Jixian Group, North China: Implications for Biological and Oceanic Evolution. Precambrian Research, 2013, 224: 169-183.

[22]

Guo J., Ren L., Bai J. Analysis of the Sedimentary Setting of the Paleoproterozoic Hutuo Group in the Wutaishan Area: Foreland Basin or Intracontinental Rift Basin?. Earth Science Frontiers, 2011, 18: 211-220.

[23]

Hoffman P. F. The Great Oxidation and a Siderian Snowball Earth: MIF-S Based Correlation of Paleoproterozoic Glacial Epochs. Chemical Geology, 2013, 362: 143-156.

[24]

Hou G., Li J., Liu Y., . Late Paleoproterozoic Extensional Events in North China Craton: Aulacogen and dyke Swarms. Progress in Natural Science, 2005, 15: 1366-1373.

[25]

Hudson J. D. Stable Isotopes and Limestone Lithification. Journal of the Geological Society, 1977, 133: 637-660.

[26]

Jacobsen S. B., Kaufman A. J. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 1999, 161: 37-57.

[27]

Kah L. C., Sherman A. G., Narbonne G. M., . d13C Stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for Regional Lithostratigraphic Correlations. Canadian Journal of Earth Sciences, 1999, 36: 313-332.

[28]

Karhu J. A., Holland H. D. Carbon Isotopes and the Rise of Atmospheric Oxygen. Geology, 1996, 24: 867-870.

[29]

Kaufman A. J., Knoll A. H. Neoproterozoic Variations in the C-isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 1995, 73: 27-49.

[30]

Kong F., Yuan X., Zhou C. Paleoproterozoic Glaciation: Evidence from Carbon Isotope Record of the Hutuo Group, Wutai Mountain Area of Shanxi Province, China. Chinese Science Bulletin, 2011, 56: 2922-2930.

[31]

Kump L. R., Junium C., Arthur M. A., . Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event. Science, 2011, 334: 1694-1696.

[32]

Kusky T.M., Li J. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 2003, 22: 383-397.

[33]

Lai Y., Chen C., Tang H. Paleoproterozoic Positive d13C Excursion in Henan, China. Geomicrobiology Journal, 2012, 29: 287-298.

[34]

Lewis S., Holness M., Graham C. Ion Microprobe Study of Marble from Naxos, Greece: Grain-Scale Fluid Pathways and Stable Isotope Equilibration during Metamorphism. Geology, 1998, 26: 935-938.

[35]

Liu C., Zhao G., Sun M., . U-Pb and Hf isotopic Study of Detrital Zircons from the Hutuo Group in the Trans-North China Orogen and Tectonic Implications. Gondwana Research, 2011, 20: 106-121.

[36]

Liu C., Zhao G., Sun M., . Detrital Zircon U–Pb Dating, Hf Isotopes and Whole-Rock Geochemistry from the Songshan Group in the Dengfeng Complex: Constraints on the Tectonic Evolution of the Trans-North China Orogen. Precambrian Research, 2012, 192: 1-15.

[37]

Luo G., Junium C. K., Kump L. R., . Shallow Stratification Prevailed for 1700 to 1300 Ma Ocean: Evidence from Organic Carbon Isotopes in the North China Craton. Earth and Planetary Science Letters, 2014, 400: 219-232.

[38]

Maheshwari A., Sial A. N., Gaucher C., . Global Nature of the Paleoproterozoic Lomagundi Carbon Isotope Excursion: A Review of Occurrences in Brazil, India, and Uruguay. Precambrian Research, 2010, 182: 274-299.

[39]

Martin A. P., Condon D. J., Prave A. R., . A Review of Temporal Constraints for the Palaeoproterozoic Large, Positive Carbonate Carbon Isotope Excursion (the Lomagundi- Jatuli Event). Earth-Science Reviews, 2013, 127: 242-261.

[40]

Martin A. P., Condon D. J., Prave A. R., . ating the Termination of the Palaeoproterozoic Lomagundi-Jatuli Carbon Isotopic Event in the North Transfennoscandian Greenstone Belt. Precambrian Researc, 2013, 224: 160-168.

[41]

Melezhik V. A., Fallick A. E. A Widespread Positive d13Ccarb Anomaly at Around 2.33–2.06 Ga on the Fennoscandian Shield: a Paradox?. Terra Nova, 2010, 8: 141-157.

[42]

Melezhik V. A., Fallick A. E. d13C and d18O Variations in Primary and Secondary Carbonate Phases: Several Contrasting Examples from Palaeoproterozoic 13C-Rich Metamorphosed Dolostones. Chemical Geology, 2003, 201: 213-228.

[43]

Melezhik V. A., Fallick A. E. On the Lomagundi-Jatuli Carbon Isotopic Event: The Evidence from the Kalix Greenstone Belt, Sweden. Precambrian Research, 2010, 179: 165-190.

[44]

Melezhik V. A., Fallick A. E., Filippov M. M., . Karelian Shungite-an Indication of 2.0-Ga-old Metamorphosed Oil-Shale and Generation of Petroleum: Geology, Lithology and Geochemistry. Earth-Science Reviews, 1999, 47: 1-40.

[45]

Melezhik V. A., Fallick A. E., Medvedev P. V., . Extreme 13Ccarb Enrichment in ca. 2.0 Ga Magnesite- Stromatolite-Dolomite-'Red Beds' Association in a Global Context: a Case for the World-Wide Signal Enhanced by a Local Environment. Earth-Science Review, 1999, 48: 71-120.

[46]

Melezhik V. A., Fallick A. E., Rychanchik D. V., . Palaeoproterozoic Evaporites in Fennoscandia: Implications for Seawater Sulphate, the Rise of Atmospheric Oxygen and Local Amplification of the d13C Excursion. Terra Nova, 2005, 17: 141-148.

[47]

Melezhik V. A., Gorokhov I. M., Fallick A. E., . Strontium and Carbon Isotope Geochemistry Applied to Dating of Carbonate Sedimentation: an Example from High-Grade Rocks of the Norwegian Caledonides. Precambrian Research, 2001, 108: 267-292.

[48]

Melezhik V., Fallick A. E., Pokrovsky B. G. Enigmatic Nature of Thick Sedimentary Carbonates Depleted in 13C beyond the Canonical Mantle Value: the Challenges to Our Understanding of the Terrestrial Carbon Cycle. Precambrian Research, 2005, 137: 131-165.

[49]

Melezhik V., Prave A., Fallick A., . Reading the Archive of Earth's Oxygenation: Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia, 2013 Heidelberg: Springer, 490.

[50]

Miao P. S., Zhang Z. F., Zhang J. Z., . Paleoproterozoic Stratigraphic Sequence in the Wutai Mountain Area. Regional Geology of China, 1999, 18: 405-413.

[51]

Nafi M., Fei Q., Yang X. H. Type of Sandstone and Source of Carbonate Cement in the Kongdian Formation (Upper Part), South Slope of the Dongying Depression, East China. Journal of Applied Sciences, 2004, 4: 235-241.

[52]

Papineau D. Global Biogeochemical Changes at both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 2010, 10: 165-181.

[53]

Papineau D. D., Gregorio B. T., Stroud R.M., . Ancient Graphite in the Eoarchean Quartz-Pyroxene Rocks from Akilia in Southern West Greenland II: Isotopic and Chemical Compositions and Comparison with Paleoproterozoic Banded iron Formations. Geochimica et Cosmochimica Acta, 2010, 74: 5884-5905.

[54]

Papineau D., Purohit R., Fogel M.L., . High Phosphate Availability as a Possible Cause for Massive Cyanobacterial Production of Oxygen in the Paleoproterozoic Atmosphere. Earth and Planetary Science Letters, 2013, 362: 225-236.

[55]

Schidlowski M., Eichmann R., Junge C.E. Carbon Isotope Geochemistry of the Precambrian Lomagundi Carbonate Province, Rhodesia. Geochimica et Cosmochimica Acta, 1976, 40: 449-455.

[56]

Tang H., Chen Y., Wu G., . Paleoproterozoic Positive d13Ccarb Excursion in the Northeastern Sino-Korean Craton: Evidence of the Lomagundi Event. Gondwana Research, 2011, 19: 471-481.

[57]

Valley J.W. Stable Isotope Geochemistry of Metamorphic Rocks, Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, 1986, 445-489.

[58]

Veizer J. Chemical Diagenesis of Carbonates: Theory and Application of Trace Element Technique. Stable Isotopes in Sedimentary Geology, 1983 Dallas: Society for Sedimentary Geology

[59]

Wan Y., Miao P., Liu D., . Formation Ages and SourceRegions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao Groups in the Wutai and Dongjiao Areas of the North China Craton from SHRIMP U-Pb Dating of Detrital Zircons: Resolution of debates over their Stratigraphic Relationships. Chinese Science Bulletin, 2010, 55: 1278-1284.

[60]

Wang H., Li C., Hu C., . Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (Ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 2015, 26(6): 883-892.

[61]

Wang R. A Primary Discussion on Rb-Sr and Sm-Nd Isotopic Systems of Basaltic Rocks of Hutuo Group of Early Proterozoic, Shanxi. Progress in Precambrian Research, 2010, 20: 35-42.

[62]

Wilde S. A., Zhao G., Wang K., . First^SHRIMP Zircon U-Pb Ages for Hutuo Group in Wutaishan: Further Evidence for Palaeoproterozoic Amalgamation of North China Craton. Chinese Science Bulletin, 2004, 49: 83-90.

[63]

Wu J., Liu D., Jin L. The Zircon U-Pb Age of Metamorphosed Basic Volcanic Lavas from the Hutuo Group in the Wutai Mountain area, Shanxi Province. Geological Review, 1986, 32: 178-185.

[64]

Zhao D. The Age and Genesis of Phosphorous Deposits of the Dongjiao Type. Chinese Journal of Geology, 1982, 4: 386-394.

[65]

Zhao G., Sun M., Wilde S. A., . Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 2005, 136: 177-202.

[66]

Zhao G., Wilde S. A., Cawood P. A., . Tectonothermal History of the Basement Rocks in the Western Zone of the North China Craton and Its Tectonic Implications. Tectonophysics, 1999, 310: 37-53.

[67]

Zhong H., Ma Y. Carbon Isotope Stratigraphy of Dolomites in the Early Proterozoic Succession, North China. Geological Magazine, 1997, 134: 763-770.

[68]

Zhu S. An Outline of Studies on the Precambrian Stromatolites of China. Precambrian Research, 1982, 18: 367-396.

[69]

Zhu S., Chen H. Characteristics of Palaeoproterozoic Stromatolites in China. Precambrian Research, 1992, 57: 135-163.

AI Summary AI Mindmap
PDF

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/