Rare earth element geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area, South China

Hong Xin , Shaoyong Jiang , Jinghong Yang , Heping Wu , Daohui Pi

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 204 -210.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (2) : 204 -210. DOI: 10.1007/s12583-015-0653-5
Article

Rare earth element geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area, South China

Author information +
History +
PDF

Abstract

Phosphatic rocks are widely distributed in Neoproterozoic Ediacaran Doushantuo Formation in Yangtze Gorges Area, South China. In this study, rare earth element geochemistry of eight phosphatic rock samples from the Hushan Section has been studied. All the samples display typical hat-shaped REE patterns, moderate negative Ce anomalies (Ce/Ce*=0.55 to 0.67), slightly positive Eu anomalies (Eu/Eu*=1.05 to 1.22) and low Y/Ho ratios (38.2±5.6). The hat-shaped REE patterns indicate diagenetic alteration of the primary REE signatures, which coincides with detrital siliciclastic sources of REE based on the Y/Ho ratios. The degree of Negative Ce anomalies and positive Eu anomalies may have recorded the redox features of diagenetic fluids, suggesting an anoxic environment during the phosphogenesis processes in Neoproterozoic Ediacaran Doushantuo Formation, South China. The geochemical comparison between the Lower Phosphorite Layer and Upper Phosphorite Layer at Hushan indicates a greater degree of diagenesis occurred in the Upper Layer than the Lower one. Besides the terrigenous sources of REE, organic materials could have also played a role on the REE characteristics.

Keywords

phosphatic rocks / rare earth element / Ediacaran Doushantuo Formation / Yangtze Gorges area

Cite this article

Download citation ▾
Hong Xin, Shaoyong Jiang, Jinghong Yang, Heping Wu, Daohui Pi. Rare earth element geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area, South China. Journal of Earth Science, 2016, 27(2): 204-210 DOI:10.1007/s12583-015-0653-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alibo D. S., Nozaki Y. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica Et Cosmochimica Acta, 1999, 63: 363-372.

[2]

Bau M., Dulski P. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup South Africa. Precambrian Research, 1996, 79: 37-55.

[3]

Condon D., Zhu M., Bowring S., . U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95-98.

[4]

De Baar H. J. W., Bacon M. P., Brewer P. G. Rare Earth Elements in Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 1985, 49: 1943-1959.

[5]

Felitsyn S., Morad S. REE Patterns in Latest Neoproterozoic–Early Cambrian Phosphate Concretions and Associated Organic Matter. Chemical Geology, 2010, 187: 257-265.

[6]

Gnandi K., Tobschall H. J. Distribution Patterns of Rare-Earth Elements and Uranium in Tertiary Sedimentary Phosphorites of HahotoÉ-KpogamÉ, Togo. Journal of African Earth Sciences, 2003, 37: 1-10.

[7]

German C. R., Holliday B. P., Elderfield H. Redox Cycling of Rare-Earth Ele-Ments in the Suboxic Zone of the Black-Sea. Geochimica Et Cosmochimica Acta, 1991, 55: 3553-3558.

[8]

Ilyin A. V. Rare-Earth Geochemistry of ‘Old’ Phosphorites and Probability of Syngenetic Precipitation and Accumulation of Phosphate. Chemical Geology, 1998, 144: 243-256.

[9]

Jarvis I., Burnett W., Nathan Y., . Phosphorite Geochemistry: State-of-the-Art and Environmental Concerns. Eclogae Geologicae Helvetiae, 1994, 87: 643-700.

[10]

Jiang S. Y., Zhao H. X., Chen Y. Q., . Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 2007, 244: 584-604.

[11]

Kidder D., Krishnaswamy R., Mapes R. H. Elemental Mobility in Phosphatic Shales during Concretion Growth and Implication for Provenance Analysis. Chemical Geology, 2003, 198: 335-353.

[12]

Li C., Chen J., Hua T. Precambrian Sponges with Cellular Structures. Science, 1998, 279: 879-882.

[13]

Ling H. F., Chen X., Li D., . Cerium Anomaly Variations in Ediacaran–Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater. Precambrian Research, 2013, 225: 110-127.

[14]

Liu P., Yin C., Gao L., . New Material of Microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping Area, Yichang, Hubei Province and Its Zircon SHRIMP U-Pb Age. Chinese Science Bulletin, 2009, 54(6): 1058-1064.

[15]

Mazumdar A., Banerjee D. M., Schidlowski M., Balaram V. Rare-Earth Elements and Stable Isotope Geochemistry of Early Cambrian Chert-Phosphorite Assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, india). Chemical Geology, 1999, 156: 275-297.

[16]

McArthur J. M., Walsh J. N. Rare-Earth Element Geochemistry of Phosphorites. Chemical Geology, 1984, 47: 191-220.

[17]

McLennan S. M. Rare-Earth Elements in Sedimentary- Rocks–Influence of Provenance and Sedimentary Processes. Review in Mineralogy, 1989, 21: 169-200.

[18]

Morad S., Felitsyn S. Identification of Primary Ce-Anomaly Signatures in Fossil Biogenic Apatite: Implication for the Cambrian Oceanic Anoxia and Phosphogenesis. Sedimentary Geology, 2001, 143: 259-264.

[19]

Muscente A. D., Hawkins A. D., Xiao S. Fossil Preservation through Phosphatization and Silicification in the Ediacaran Doushantuo Formation (South China): A Comparative Synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 434: 46-62.

[20]

Ogihara S. Geochemical Characteristics of Phosphorite and Carbonate Nodules from the Miocene Funakawa Formation, Western Margin of the Yokote Basin, Northeast Japan. Sedimentary Geology, 1999, 125: 69-82.

[21]

Paytan A., McLaughlin K. The Oceanic Phosphorus Cycle. Chemical Review, 2007, 107: 563-576.

[22]

Pi D. H., Liu C. Q., Graham A., . Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 2013, 225: 218-229.

[23]

Rasmussen B., Buick R., Taylor W. R. Removal of Oceanic REE by Authigenic Precipitation of Phosphatic Minerals. Earth and Planetary Science Letters, 1998, 164: 135-149.

[24]

Reynard B., LÉCuyer C., Grandjean P. Crystal-Chemical Controls on Rare-Earth Element Concentrations in Fossil Biogenic Apatites and Implications for Paleoenvironmental Reconstructions. Chemical Geology, 1999, 155: 233-241.

[25]

Sawaki Y., Ohno T., Tahata M., . The Ediacaran Radiogenic Sr Isotope Excursion in the Doushantuo Formation in the Three Gorges Area, South China. Precambrian Research, 2010, 176(1–4): 46-64.

[26]

Shields G., Stille P. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 2001, 175: 29-48.

[27]

Sholkovitz E. R., Landing W. M., Lewis B. L. Ocean Particle Chemistry—the Fractionation of Rare-Earth Elements between Suspended Particles and Seawater. Geochimica Et Cosmochimica Acta, 1994, 58: 1567-1579.

[28]

Shields G. A., Webb G. E. Has the REE Composition of Seawater Changed over Geological Time?. Chemical Geology, 2004, 204: 103-107.

[29]

Trappe J. Phanerozoic Phosphorite Depositional Systems. Lecture Notes in Earth Sciences, 1998 Berlin: Springer, 76.

[30]

Wang X. F., Erdtmann B. D., Chen X. H., . Integrated Sequence, Bio-and Chemo-Stratigraphy of the Terminal Proterozoic to Lowermost Cambrian Black Rock Series from Central South China. Episodes, 1998, 21(3): 178-189.

[31]

Webb G. E., Kamber B. S. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 2000, 64: 1557-1565.

[32]

Wei H. Z., Jiang S. Y., Xiao Y. K., . Boron Isotopic Fractionation and Trace Element Incorporation in Various Species of Modern Corals in Sanya Bay, South China Sea. Journal of Earth Science, 2014, 25(3): 431-444.

[33]

Wright J., Schrader H., Holser W. T. Paleoredox Variations in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite. Geochimica Et Cosmochimica Acta, 1987, 51: 631-644.

[34]

Xiao S., Yuan X., Steiner M., Knoll A. H. Macroscopic Carbonaceous Compressions in a Terminal Proterozoic Shale: A Systematic ReAssessment of the Miaohe Biota, South China. Journal of Paleontology, 2002, 76: 347-376.

[35]

Xiao S., Zhang Y., Knoll A. H. Three-Dimensional Preservation of Algae and Animal Embryos in a Neoproterozoic Phosphorite. Nature, 1998, 391: 553-558.

[36]

Xin H., Jiang S. Y., Yang J. H., . Rare Earth Element and Sr-Nd Isotope Geochemistry of Phosphatic Rocks in Neoproterozoic Ediacaran Doushantuo Formation in Zhangcunping Section from Western Hubei Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 712-724.

[37]

Yin L., Zhu M., Knoll A. H., . Doushantuo Embryos Preserved inside Diapause Egg Cysts. Nature, 2007, 446: 661-663.

[38]

Yuan X., Chen Z., Xiao S., Zhou C., Hua H. An Early Ediacaran Assemblage of Macroscopic and Morphologically Differentiated Eukaryotes. Nature, 2011, 470: 390-393.

[39]

Zhang J., Nozaki Y. Rare Earth Elements and Yttrium in Seawater: ICP-MS Determinations in the East Caroline, Coral Sea, and South Fiji Basins of the Western South Pacific Ocean. Geochimica Et Cosmochimica Acta, 1996, 60: 4631-4644.

[40]

Zhao L. S., Chen Z. Q., Algeo T. J., . Rare-Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis?. Global and Planetary Change, 2013, 105: 135-151.

[41]

Zhou C., Xie G., Xiao S. New Data of Microfossils from Doushantuo Formation at Zhangcunping in Yichang, Hubei Province. Acta Micropalaeontologica Sinica, 2005, 22(3): 217-224.

[42]

Zhu B., Becker H., Jiang S. Y., . Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China. Precambrian Research, 2013, 225: 69-76.

[43]

Zhu B., Jiang S. Y., Yang J. H., . Rare Earth Element and Sr-Nd Isotope Geochemistry of Phosphate Nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 132-143.

[44]

Zhu M. Y., Lu M., Zhang J. M., . Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 2013, 225: 7-28.

[45]

Zhu M. Y., Zhang J. M., Steiner M., . Sinian- Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: an Integrated Approach. Progress in Natural Science, 2003, 13: 951-960.

[46]

Zhu M. Y., Zhang J. M., Yang A. H. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 7-61.

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/