Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir

Haiyang Wang, Chao Li, Chaoyong Hu, Shucheng Xie

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 883-892.

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 883-892. DOI: 10.1007/s12583-015-0650-3
Article

Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir

Author information +
History +

Abstract

The Ediacaran Doushantuo Formation (ca. 635–551 Ma) deposited immediately after the last Neoproterozoic glaciations and recorded the most prominent negative excursions of carbonate carbon isotopic composition (δ13Ccarb). These excursions have been interpreted as a result of widespread remineralization of a large dissolved organic carbon (DOC) reservoir in the Ediacaran deep oceans. However, there is no direct evidence so far found in rocks for the proposed DOC reservoir, which devalues such an interpretation. Here, we conducted a detailed study on the glow-curves characteristics and signal origins of spurious thermoluminescence (TL) of the Doushantuo Formation at Jiulongwan in Yangtze Gorges area, South China, through sequential tests under CO2, N2 and air. Spurious TL intensities for test samples before and after removing soluble organic matter via accelerated solvent extraction (ASE) are nearly identical. Further, significant positive correlation between the spurious TL intensity and total inorganic carbon (TIC) content (R 2=0.7) indicate that the Doushantuo spurious TL with the characteristic peak at 393.5 °C from the sequential test is chemiluminescence (CL) which is derived from the oxidation of a type of non-volatile organic matter strongly associated with carbonate mineral lattice (termed as “X-OM”). A most likely explanation is that the X-OM is a type of dissolved organic matter which co-precipitated with carbonate minerals into sediments in the Ediacaran Doushantuo Ocean. Furthermore, a significant exponential negative correlation (R 2=0.55) is observed between the CL data and the isotopic difference between carbonate and coexisting bulk organic matter (i.e., Δ13Ccarb-org, a proxy for remineralization degree of DOC reservoir in proposed DOC hypothesis), suggesting that the X-OM was derived from the oxidation of the DOC reservoir in the Ediacaran Ocean. We thus propose that the X-OM and its CL detected in our study may have recorded the evolution of the possible DOC reservoir in the Ediacaran Doushantuo Ocean. If this is correct, the stratigraphic variations of the CL intensity in the Doushantuo Formation at Jiulongwan support the pulsed oxidation of the DOC reservoir in the Ediacaran Ocean. Our findings indicate that the CL derived from the oxidation of non-volatile organic matter which is strongly associated with carbonate mineral lattices in rocks may provide a feasible approach for probing the evolution of DOC reservoir in the ancient oceans, thus likely provide direct geological evidence for the development of oceanic DOC reservoir in geological times.

Keywords

Doushantuo Formation / spurious thermoluminescence / chemiluminescence / carbonates / dissolved organic carbon

Cite this article

Download citation ▾
Haiyang Wang, Chao Li, Chaoyong Hu, Shucheng Xie. Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir. Journal of Earth Science, 2015, 26(6): 883‒892 https://doi.org/10.1007/s12583-015-0650-3

References

Aitken M. J., Fleming S. J., Reid J., . McDougall D. J., . Elimination of Spurious Thermoluminescence. Thermoluminescence of Geological Materials, 1968 New York: Academic Press, 133-142.
Baietto V., Villeneuve G., Guibert P., . EPR and TL Correlation in Some Powdered Greek White Marbles. Applied Radiation and Isotopes, 2000, 52(2): 229-235.
CrossRef Google scholar
Baker A., Barnes W. L., Smart P. L. Speleothern Luminescence Intensity and Spectral Characteristics: Signal Calibration and a Record of Palaeovegetation Change. Chemical Geology, 1996, 130(1): 65-76.
CrossRef Google scholar
Baker A., Genty D., Smart P. L. High-Resolution Records of Soil Humification and Paleoclimate Change from Variations in Speleothem Luminescence Excitation and Emission Wavelengths. Geology, 1998, 26 10 903
CrossRef Google scholar
Bos A. J. J. Theory of Thermoluminescence. Radiation Measurements, 2006, 41: S45-S56.
CrossRef Google scholar
Bristow T. F., Kennedy M. J. Carbon Isotope Excursions and the Oxidant Budget of the Ediacaran Atmosphere and Ocean. Geology, 2008, 36 11 863
CrossRef Google scholar
Bruce J., Galloway R. B., Harper K., . Bleaching and Phototransfer of Thermoluminescence in Limestone. Radiation Measurements, 1999, 30(4): 497-504.
CrossRef Google scholar
Chen G. F., Hu C. Y., Li N., . Thermoluminescence in Response to the Mass Extinction Event in Penglaitan Section in Laibin, Guangxi. Science China Earth Sciences, 2013, 56(8): 1350-1356.
CrossRef Google scholar
Christodoulides C., Fremlin J. H. Thermoluminescence of Biological Materials. Nature, 1971, 232: 257-258.
CrossRef Google scholar
Condon D., Zhu M. Y., Bowring S., . U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308(5718): 95-98.
CrossRef Google scholar
Debenham N. C. Reliability of Thermoluminescence Dating of Stalagmitic Calcite. Nature, 1983, 304: 154-156.
CrossRef Google scholar
Dupraz C., Reid R. P., Braissant O., . Processes of Carbonate Precipitation in Modern Microbial Mats. Earth-Science Reviews, 2009, 96(3): 141-162.
CrossRef Google scholar
Engin B., Güven O. Thermoluminescence Dating of Denizli Travertines from the Southwestern Part of Turkey. Applied Radiation and Isotopes, 1997, 48(9): 1257-1264.
CrossRef Google scholar
Fattahi M., Stokes S. Dating Volcanic and Related Sediments by Luminescence Methods: A Review. Earth-Science Reviews, 2003, 62(3–4): 229-264.
CrossRef Google scholar
Fike D. A., Grotzinger J. P., Pratt L. M., . Oxidation of the Ediacaran Ocean. Nature, 2006, 444(7120): 744-747.
CrossRef Google scholar
Grotzinger J. P., Fike D. A., Fischer W. W. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth’s history. Nature Geoscience, 2011, 4(5): 285-292.
CrossRef Google scholar
Gruber D. F., Simjouw J. P., Seitzinger S. P., . Dynamics and Characterization of Refractory Dissolved Organic Matter Produced by a Pure Bacterial Culture in an Experimental Predator-Prey System. Applied and Environmental Microbiology, 2006, 72(6): 4184-4191.
CrossRef Google scholar
Jiang G. Q., Kaufman A. J., Christie-Blick N., . Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ13C Gradient. Earth and Planetary Science Letters, 2007, 261(1–2): 303-320.
CrossRef Google scholar
Jiang G. Q., Shi X. Y., Zhang S. H., . Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 2011, 19(4): 831-849.
CrossRef Google scholar
Jiao N. Z., Herndl G. J., Hansell D. A., . Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean. Nature Reviews Microbiology, 2010, 8(8): 593-599.
CrossRef Google scholar
Johnston D. T., Macdonald F. A., Gill B. C., . Uncovering the Neoproterozoic Carbon Cycle. Nature, 2012, 483(7389): 320-323.
CrossRef Google scholar
Kulak A. N., Iddon P., Li Y., . Continuous Structural Evolution of Calcium Carbonate Particles: A Unifying Model of Copolymer-Mediated Crystallization. Journal of the American Chemical Society, 2007, 129(12): 3729-3736.
CrossRef Google scholar
Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328(5974): 80-83.
CrossRef Google scholar
Li H., Xin H. L., Muller D. A., . Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels. Science, 2009, 326(5957): 1244-1247.
CrossRef Google scholar
Li Z. X., Bogdanova S. V., Collins A. S., . Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 2008, 160(1–2): 179-210.
CrossRef Google scholar
Li Z. X., Li X. H., Kinny P. D., . Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 2003, 122(1): 85-109.
CrossRef Google scholar
Lian O. B., Roberts R. G. Dating the Quaternary: Progress in Luminescence Dating of Sediments. Quaternary Science Reviews, 2006, 25(19–20): 2449-2468.
CrossRef Google scholar
Liao J., Hu C. Y., Li C. Z., . Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy. Earth Science—Journal of China University of Geosciences, 2014, 39(4): 443-450.
Lu M., Zhu M. Y., Zhang J. M., . The DOUNCE Event at the Top of the Ediacaran Doushantuo Formation, South China: Broad Stratigraphic Occurrence and Non-Diagenetic Origin. Precambrian Research, 2013, 225: 86-109.
CrossRef Google scholar
McFadden K. A., Huang J., Chu X. L., . Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3197-3202.
CrossRef Google scholar
Ninagawa K., Takahashi N., Wada T., . Thermoluminescence Measurements of a Calcite Shell for Dating. Quaternary Science Reviews, 1988, 7(3): 367-371.
CrossRef Google scholar
Roque C., Guibert P., Vartanian E., . Thermoluminescence—Dating of Calcite: Study of Heated Limestone Fragments from Upper Paleolithic Layers at Combe Sauniere, Dordogne, France. Quaternary Science Reviews, 2001, 20(5): 935-938.
CrossRef Google scholar
Rothman D. H., Hayes J. M., Summons R. E. Dynamics of the Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8124-8129.
CrossRef Google scholar
International Journal of Speleology, 2000, 29 1
Swanson-Hysell N. L., Rose C. V., Calmet C. C., . Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling. Science, 2010, 328(5978): 608-611.
CrossRef Google scholar
Wang J., Li Z. X. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 2003, 122(1): 141-158.
CrossRef Google scholar
Wintle A. G. Effects of Sample Preparation on the Thermoluminescence Characteristics of Calcite. Modern Geology, 1975, 5: 165-167.
Yuan X. L., Xiao S. H., Yin L. M., . Doushantuo Fossils: Life on the Eve of Animal Radiation, 2002 Hefei: China University of Science and Technology Press, 1-71.
Zhu M. Y., Lu M., Zhang J. M., . Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 2013, 225: 7-28.
CrossRef Google scholar
Zhu M. Y., Zhang J. M., Yang A. H. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1–2): 7-61.
CrossRef Google scholar
Zhu M. Y., Zhang J. M., Yang A. H., . Sinian-Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 2003, 13(12): 951-960.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/