Petrogenesis for the Chiang Dao Permian high-iron basalt and its implication on the Paleotethyan Ocean in NW Thailand

Yuzhi Zhang, Yuejun Wang, Boontarika Srithai, Burapha Phajuy

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (3) : 425-434.

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (3) : 425-434. DOI: 10.1007/s12583-015-0646-4
Article

Petrogenesis for the Chiang Dao Permian high-iron basalt and its implication on the Paleotethyan Ocean in NW Thailand

Author information +
History +

Abstract

The Changning-Menglian suture in SW Yunnan has been accepted as the Paleotethyan main ocean. However, it has been a matter of debate as to its southerly extension in NW Thailand (the Chiang Mai-Chiang Rai vs. Nan-Uttaradit zone). Our field investigation identified the high-iron basaltic rocks in the Chiang Dao Permian standard profile in NW Thailand. The high-iron rocks provide crucial records for understanding the controversy on the location of Paleotethyan main ocean in NW Thailand. The Early Permian high-iron samples show extremely high FeOt (20.96 wt.%–25.56 wt.%) and TiO2 (6.07 wt.%–6.34 wt.%) and low SiO2 (38.54 wt.%–43.46 wt.%) and MgO (1.61 wt.%–2.40 wt.%) contents. Such characteristics are similar to those of the Fenner differentiation trend rarely observed in the natural system, distinct from those of the “normal” Bowen trend. Their chondritenormalized REE and primitive mantle-normalized patterns are generally similar to those of typical OIB. The initial 87Sr/86Sr ratios and εNd(t) values range from 0.704 677 to 0.705 103 and 3.16 to 3.48, respectively, falling near the field of typical OIB (oceanic-island basalt). These data synthetically suggest that the Chiang Dao high-iron rocks are the products of high-degree partial melting of peridotite with Fe-rich eclogitic blobs/streaks in response to a seamount setting. In comparison with the Permian tectonic setting in SW Yunnan and NW Thailand, it is inferred that the Paleotethyan Ocean was located between the Shan-Thai terrane of Sibumasu and Sukhothai arc along the Inthanon zone of the Chiang Mai-Chiang Rai rather than Nan-Uttaradit zones.

Keywords

high-iron rock / Fenner differentiation trend / Chiang Dao OIB-like basalt / Paleotethyan Ocean / seamount setting

Cite this article

Download citation ▾
Yuzhi Zhang, Yuejun Wang, Boontarika Srithai, Burapha Phajuy. Petrogenesis for the Chiang Dao Permian high-iron basalt and its implication on the Paleotethyan Ocean in NW Thailand. Journal of Earth Science, 2016, 27(3): 425‒434 https://doi.org/10.1007/s12583-015-0646-4

References

Barr S. M., James D. E. Trace Element Characteristics of Upper Cenozoic Basaltic Rocks of Thailand, Kampuchea and Vietnam.. Journal of Southeast Asian Earth Sciences, 1990, 4(3): 233-242.
CrossRef Google scholar
Barr S. M., Macdonald A. S., Ounchanum P., . Age, Tectonic Setting and Regional Implications of the Chiang Khong Volcanic Suite, Northern Thailand.. Journal of the Geological Society, 2006, 163(6): 1037-1046.
CrossRef Google scholar
Bowen N. L. The Evolution of the Igneous Rocks, 1928 Princeton: Princeton University Press, 1-334.
Brooks C. K., Larsen L. M., Nielsen T. F. D. Importance of Iron-Rich Tholeiitic Magmas at Divergent Plate Margins: A Reappraisal.. Geology, 1991, 19(3): 269-272.
CrossRef Google scholar
Brooks C. K., Nielsen T. F. D. Early Stages in the Differentiation of the Skaergaard Magma as Revealed by a Closely Related Suite of Dike Rocks.. Lithos, 1978, 11(1): 1-14.
CrossRef Google scholar
Bullard E. C., Everett J. E., Smith A. G. The Fit of the Continents around the Atlantic: A Symposium on Continental Drift.. Philosophical Transactions of the Royal Society of London Series A, 1965, 258: 41-51.
CrossRef Google scholar
Bunopas S., . Angsuwathana P., Wongwanich T., Tansathien W., . The Regional Stratigraphy, Paleogeographic and Tectonic Events of Thailand and Continental Southeast Asia. Proceedings of the International Symposium on Stratigraphic Correlation of Southeast Asia, 1994, 2-24.
Caridroit M. Permian Radiolaria from NW Thailand. Proceedings of the International Sysposium on Biostratigraphy of Mainland South Asia, 31 January–5 February 1993., 1993, 1: 83-96.
Caridroit M. Taxonomic Study on Carboniferous and Permian Radiolaria from NW Thailand. Paleontologic, Stratigraphic and Tectonic Significances, 1991, 21.
Cocherie A., Calvez J. Y., Oudin-Dunlop E. Hydrothermal Activity as Recorded by Red Sea Sediments: Sr-Nd Isotopes and REE Signatures.. Marine Geology, 1994, 118(3/4): 291-302.
CrossRef Google scholar
Cordery M. J., Davies G. F., Campbell I. H. Genesis of Flood Basalts from Eclogite-Bearing Mantle Plumes.. Journal of Geophysical Research: Solid Earth, 1997, 102(B9): 20179-20197.
CrossRef Google scholar
Fan W. M., Wang Y. J., Zhang Y. H., . Paleotethyan Subduction Process Revealed from Triassic Blueschists in the Lancang Tectonic Belt of Southwest China.. Tectonophysics, 2015, 662: 95-108.
CrossRef Google scholar
Feng Q. L. Long-Lived Paleotethyan Pelagic Remnant Inside Shan-Thai Block: Evidence from Radiolarian Biostratigraphy.. Science in China Series D: Earth Sciences, 2004, 47(12): 1113-1119.
CrossRef Google scholar
Feng Q. L., Yang W. Q., Shen S. Y., . The Permian Seamount Stratigraphic Sequence in Chiang Mai, North Thailand and Its Tectogeographic Significance.. Science in China Series D: Earth Sciences, 2008, 51(12): 1768-1775.
CrossRef Google scholar
Fenner C. N. The Crystallization of Basalts.. American Journal of Science, 1929, s5-18(105): 225-253.
CrossRef Google scholar
Fontaine H., Salyapongse S., Tian P., . Fontaine H., Salyapongse S., Suteethorn V., . Chapter III. An Overview of the Carboniferous of Thailand with New Data on the Carboniferous of Northeast and Northwest Thailand. Sedimentary Rocks of the Loei Region, Northeast Thailand: Statigraphy, Paleontology, Sedimentology. Bereau of Geological Survey, 2005 Bangkok: Department of Mineral Resource, 33-89.
Gasparik T., Litvin Y. A. Experimental Investigation of the Effect of Metasomatism by Carbonatic Melt on the Composition and Structure of the Deep Mantle.. Lithos, 2002, 60(3/4): 129-143.
CrossRef Google scholar
Gibson S. A. Major Element Heterogeneity in Archean to Recent Mantle Plume Starting-Heads.. Earth and Planetary Science Letters, 2002, 195(1/2): 59-74.
CrossRef Google scholar
Gibson S. A., Thompson R. N., Dickin A. P. Ferropicrites: Geochemical Evidence for Fe-Rich Streaks in Upwelling Mantle Plumes.. Earth and Planetary Science Letters, 2000, 174(3/4): 355-374.
CrossRef Google scholar
Gradstein F., Ogg J., Smith A. A Geologic Time Scale, 2004 Cambridge: Cambridge University Press
Harper G. D. Fe-Ti Basalts and Propagating-Rift Tectonics in the Josephine Ophiolite.. Geological Society of America Bulletin, 2003, 115(7): 771-787.
CrossRef Google scholar
Hauri E. H. Major-Element Variability in the Hawaiian Mantle Plume.. Nature, 1996, 382(6590): 415-419.
CrossRef Google scholar
Hennig D., Lehmann B., Frei D., . Early Permian Seafloor to Continental Arc Magmatism in the Eastern Paleo-Tethys: U-Pb Age and Nd-Sr Isotope Data from the Southern Lancangjiang Zone, Yunnan, China.. Lithos, 2009, 113(3/4): 408-422.
CrossRef Google scholar
Higgins M. D. A New Interpretation of the Structure of the Sept Iles Intrusive Suite, Canada.. Lithos, 2005, 83(3/4): 199-213.
CrossRef Google scholar
Hofmann A. W., Jochum K. P. Source Characteristics Derived from very Incompatible Trace Elements in Mauna Loa and Mauna Kea Basalts, Hawaii Scientific Drilling Project.. Journal of Geophysical Research: Solid Earth, 1996, 101(B5): 11831-11839.
CrossRef Google scholar
Hsü K. J., Bernoulli D. Genesis of the Tethys and the Mediterranean.. Initial Reports of the Deep Sea Drilling Project, 1978, 42(1): 943-949.
Hunter R. H., Sparks R. S. J. The Differentiation of the Skaergaard Intrusion.. Contributions to Mineralogy and Petrology, 1987, 95(4): 451-461.
CrossRef Google scholar
Jang Y. D., Naslund H. R., McBirney A. R. The Differentiation Trend of the Skaergaard Intrusion and the Timing of Magnetite Crystallization: Iron Enrichment Revisited.. Earth and Planetary Science Letters, 2001, 189(3/4): 189-196.
CrossRef Google scholar
John T., Scherer E. E., Schenk V., . Subducted Seamounts in an Eclogite-Facies Ophiolite Sequence: The Andean Raspas Complex, SW Ecuador.. Contributions to Mineralogy and Petrology, 2010, 159(2): 265-284.
CrossRef Google scholar
Kerrich R., Polat A., Wyman D., . Trace Element Systematics of Mg-, to Fe-Tholeiitic Basalt Suites of the Superior Province: Implications for Archean Mantle Reservoirs and Greenstone Belt Genesis.. Lithos, 1999, 46(1): 163-187.
CrossRef Google scholar
Klemme S., Blundy J. D., Wood B. J. Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite.. Geochimica et Cosmochimica Acta, 2002, 66(17): 3109-3123.
CrossRef Google scholar
Leybourne M. I., van Wagoner N. V., Ayres L. D. Partial Melting of a Refractory Subducted Slab in a Paleoproterozoic Island Arc: Implications for Global Chemical Cycles.. Geology, 1999, 27(8): 731-734.
CrossRef Google scholar
Li X. H., Su L., Chung S. L., . Formation of the Jinchuan Ultramafic Intrusion and the World’s Third Largest Ni-Cu Sulfide Deposit: Associated with the ~825 Ma South China Mantle Plume. Geochemistry, Geophysics, Geosystems, 2005, 6 11 Q11004
CrossRef Google scholar
Liang X. R., Wei G. J., Li X. H., . Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma-Mass Spec-Trometer (MC-ICPMS).. Geochimica, 2003, 32: 91-96.
Liu B. P., Feng Q. L., Fang N. Q. Tectonic Evolution of the Palaeo-Tethys in Changning-Menglian Belt and Adjacent Regions, Western Yunnan.. Earth Science— Journal of China University Geosciences, 1991, 2: 18-28.
Mantajit N. Ratanasthien B., Rieb S. L. Thailand and Tethys Sea. Proceedings of the International Symposium on Shallow Tethys 5, 1999 Chiang Mai, Thailand. IX: Chiang Mai University
Meschede M. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram.. Chemical Geology, 1986, 56(3/4): 207-218.
CrossRef Google scholar
Metcalfe I. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys.. Australian Journal of Earth Sciences, 1996, 43(6): 605-623.
CrossRef Google scholar
Metcalfe I. Permian Tectonic Framework and Palaeogeography of SE Asia.. Journal of Asian Earth Sciences, 2002, 20(6): 551-566.
CrossRef Google scholar
Metcalfe I. Paleozoic and Mesozoic Tectonic and Paleogeographical Evolution of SE Asia.. Geological Society, London, Special Publications, 2009, 315: 7-23.
CrossRef Google scholar
Minato M. An Occurrence of Wentzella Subtimorica in Northern Tai.. Proceedings of the Imperial Academy of Japan, 1944, 20: 104-106.
Miyahigashi A. Foraminiferal Assemblages and Their Ages from Paleo-Tethyan Seamount-Type Limestone Distributed in the Chiang Dao Area, Northern Thailand: [Dissertation], 2009 Fukuoka: Department of Earth System Science, Fukuoka University
Namur O., Charlier B., Toplis M. J., . Crystallization Sequence and Magma Chamber Processes in the Ferrobasaltic Sept Iles Layered Intrusion, Canada.. Journal of Petrology, 2010, 51(6): 1203-1236.
CrossRef Google scholar
Osborn E. F. Role of Oxygen Pressure in the Crystallisation and differentiation of Basaltic Magmas.. American Journal of Science, 1959, 257: 609-647.
CrossRef Google scholar
Pearce J. A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.. Lithos, 2008, 100(1–4): 14-48.
CrossRef Google scholar
Pearce J. A., Norry M. J. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.. Contribustions to Mineralogy of Petrology, 1979, 69: 33-47.
CrossRef Google scholar
Peng T. P., Wilde S. A., Fan W. M., . Mesoproterozoic High Fe-Ti Mafic Magmatism in Western Shandong, North China Craton: Petrogenesis and Implications for the Final Breakup of the Columbia Supercontinent.. Precambrian Research, 2013, 235: 190-207.
CrossRef Google scholar
Phajuy B., Panjasawatwong Y., Osataporn P. Preliminary Geochemical Study of Volcanic Rocks in the Pang Mayao Area, Phrao, Chiang Mai, Northern Thailand: Tectonic Setting of Formation.. Journal of Asian Earth Sciences, 2005, 24(6): 765-776.
CrossRef Google scholar
Prasongtham P., Kanjanapayont P. Deformation Styles of the Uthai Thani-Nakhon Sawan Ridge within the Chainat Duplex, Thailand.. Journal of Earth Science, 2015, 25(5): 854-860.
CrossRef Google scholar
Qian X., Feng Q. L., Yang W. Q., . Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications.. Journal of Asian Earth Sciences, 2015, 98: 342-357.
CrossRef Google scholar
Rapp R. P., Watson E. B., Miller C. F. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites.. Precambrian Research, 1991, 51(1–4): 1-25.
CrossRef Google scholar
Ratanasthien B., Singharajwarapan S., Chonglakmani C. Pre-Shallow Tethys 5 Symposium Excursion, 1999, 14.
Ridd M. F. East Flank of the Sibumasu Block in NW Thailand and Myanmar and Its Possible Northward Continuation into Yunnan: A Review and Suggested Tectono-Stratigraphic Interpretation.. Journal of Asian Earth Sciences, 2015, 104: 160-174.
CrossRef Google scholar
Rutherford L., Barovich K., Hand M., . Continental ca. 1.7–1.69 Ga Fe-Rich Metatholeiites in the Curnamona Province, Australia: A Record of Melting of a Heterogeneous, Subduction-Modified Lithospheric Mantle.. Australian Journal of Earth Sciences, 2006, 53(3): 501-519.
CrossRef Google scholar
Sashida K., Igo H., Ueno K., . Late Palaeozoic Radiolarian Fauna from Northern and Northeastern Thailand.. Science Reports of the Institute of Geoscience, 1998, 19: 1-27.
Sengör D., Altiner D., Cin A., . Origin and Assembly of the Tethyside Orogenic Collage at the Expense of Gondwana Land. Gondwana and Tethys., 1988, 37: 119-181.
Shen S. Y., Feng Q. L., Yang W. Q., . Study on the Geochemical Characteristics of Ocean-Ridge and Oceanic-Island Volcanic Rocks in the Nan-Uttaradit Zone, Northern Thailand.. Chinese Journal of Geochemistry, 2010, 29(2): 175-181.
CrossRef Google scholar
Sone M., Metcalfe I. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny.. Comptes Rendus Geoscience, 2008, 340(2/3): 166-179.
CrossRef Google scholar
Sparks R. S. J., Meyer P., Sigurdsson H. Density Variation Amongst Mid-Ocean Ridge Basalts: Implications for Magma Mixing and the Scarcity of Primitive Lavas.. Earth and Planetary Science Letters, 1980, 46(3): 419-430.
CrossRef Google scholar
Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, 1989, 42: 313-345.
CrossRef Google scholar
Takahahshi E., Nakajima K., Wright T. L. Origin of the Columbia River Basalts: Melting Model of a Heterogeneous Plume Head.. Earth and Planetary Science Letters, 1998, 162(1–4): 63-80.
CrossRef Google scholar
Toplis M. J., Carroll M. R. An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral––Melt Equilibria in Ferro-Basaltic Systems.. Journal of Petrology, 1995, 36(5): 1137-1170.
CrossRef Google scholar
Toriyama R. On Some Fusulinids from Northern Tai.. Japanese Journal of Geology and Geography, 1944, 19: 243-247.
Ueno K. Ratanasthien B., Ritb S. L. Gondwana/Tethys Divide in East Asia: Solution from Late Paleozoic Foraminiferal Paleobiogeography. Proceedings of the International on Shallow Tethys (ST) 5, Chiang Mai, 1999, 45-54.
Ueno K. Geotectonic Linkage between West Yunnan and Mainland Thailand: Toward the Unified Geotectonic Evolution Model of East Asia. Geodynamics Process of Gondwanaland-Derived Terranes in East & Southeast Asia, Their Crustal Evolution, Emplacement and Natural Sources Potential, 2002, 35-42.
Ueno K., Charoentitirat T., Sera Y., . The Doi Chiang Dao limestone: Paleo-Tethyan Mid-Oceanic Carbonates in the Inthanon Zone of North Thailand.. Tetrahedron Letters, 2008, 12(43): 4037-4038.
Ueno K., Igo H. Late Paleozoic Foraminifers from the Chiang Dao Area, Northern Thailand: Geologic Age, Faunal Affinity, and Paleobiogeographic Implications. Proceedings of the XIII International Congress on the Carboniferous and Permian, Part I. Prace Panstwowego Instytutu Geologic Znego. 18 August–2 September, 1995, Krakow, 1997, 157: 339-358.
Ueno K., Tsutsumi S. Lopingian (Late Permian) Foraminiferal Faunal Succession of a Paleo-Tethyan Mid-Oceanic Carbonate Buildup: Shifodong Formation in the Changning-Menglian Belt, West Yunnan, Southwest China.. Island Arc, 2009, 18(1): 69-93.
CrossRef Google scholar
Veksler I. V., Dorfman A. M., Danyushevsky L. V., . Immiscible Silicate Liquid Partition Coefficients: Implications for Crystal-Melt Element Partitioning and Basalt Petrogenesis.. Contributions to Mineralogy and Petrology, 2006, 152(6): 685-702.
CrossRef Google scholar
Von Braun E., Hahn L. Geologic Map of Northern Thailand, Sheet 2 (Chiang Rai), Scale 1: 250 000. Federal Institute for Geosciences and Natural Resources, 1976
Wang Y. J., Fan W. M., Zhang Y. H., . Geochemical, 40Ar/39Ar Geochronological and Sr-Nd Isotopic Constraints on the Origin of Paleoproterozoic Mafic Dikes from the Southern Taihang Mountains and Implications for the Ca. 1 800 Ma Event of the North China Craton.. Precambrian Research, 2004, 135(1/2): 55-77.
CrossRef Google scholar
Wang Y. J., Zhang A. M., Fan W. M., . Petrogenesis of Late Triassic Post-Collisional Basaltic Rocks of the Lancangjiang Tectonic Zone, Southwest China, and Tectonic Implications for the Evolution of the Eastern Paleotethys: Geochronological and Geochemical Constraints.. Lithos, 2010, 120(3/4): 529-546.
CrossRef Google scholar
Wang Y. J., Zhao G. C., Cawood P. A., . Geochemistry of Paleoproterozoic (~1 770 Ma) Mafic Dikes from the Trans-North China Orogen and Tectonic Implications.. Journal of Asian Earth Sciences, 2008, 33(1/2): 61-77.
CrossRef Google scholar
Wei G. J., Liang X. R., Li X. H., . Precise Measurement of Sr Isotopic Compositions of Liquid and Solid Base Using (LP) MC-ICP-MS.. Geochimica, 2002, 31(3): 295-305.
Wonganan N., Caridroit M. Middle and Upper Devonian Radiolarian Faunas from Chiang Dao Area, Chiang Mai Province, Northern Thailand.. Micropaleontology, 2005, 51(1): 39-57.
CrossRef Google scholar
Wonganan N., Randon C., Caridroit M. Mississippian (Early Carboniferous) Radiolarian Biostratigraphy of Northern Thailand (Chiang Dao Area).. Geobios, 2007, 40(6): 875-888.
CrossRef Google scholar
Wu H. R., Boulter C. A., Ke B. J., . The Changning-Menglian Suture Zone: A Segment of the Major Cathaysian-Gondwana Divide in Southeast Asia.. Tectonophysics, 1995, 242(3/4): 267-280.
CrossRef Google scholar
Xing H. L., Liu Y., Gao J. F., . Recent Development in Numerical Simulation of Enhanced Geothermal Reservoirs.. Journal of Earth Science, 2015, 26(1): 28-36.
CrossRef Google scholar
Xu Y. G., Mei H. J., Xu J. F., . Origin of Two Differentiation Trends in the Emeishan Flood Basalts.. Chinese Science Bulletin, 2003, 48(4): 390-394.
CrossRef Google scholar
Zhao J. H., Asimow P. D. Neoproterozoic Boninite-Series Rocks in South China: A Depleted Mantle Source Modified by Sediment-Derived Melt.. Chemical Geology, 2014, 388: 98-111.
CrossRef Google scholar
Zhao J. H., Zhou M. F. Neoproterozoic High-Mg Basalts Formed by Melting of Ambient Mantle in South China.. Precambrian Research, 2013, 233: 193-205.
CrossRef Google scholar
Zhong D. L. The Paleotethys Orogenic Belt in West of Sichuan and Yunnan, 1998 Beijing: Science Publishing House, 1-230.

Accesses

Citations

Detail

Sections
Recommended

/