Energy dissipation of P- and S-waves in fluid-saturated rocks: An overview focusing on hydraulically connected fractures

J. Germán Rubino , Beatriz Quintal , Tobias M. Müller , Luis Guarracino , Ralf Jänicke , Holger Steeb , Klaus Holliger

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 785 -790.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 785 -790. DOI: 10.1007/s12583-015-0613-0
Article

Energy dissipation of P- and S-waves in fluid-saturated rocks: An overview focusing on hydraulically connected fractures

Author information +
History +
PDF

Abstract

An important characteristic of fractured rocks is their high seismic attenuation, which so far has been mainly attributed to wave-induced fluid flow (WIFF) between the fractures and the embedding matrix. The influence of fracture connectivity on seismic attenuation has, however, recently, only been investigated. Numerical compressibility and shear tests based on Biot’s quasi-static poro-elastic equations illustrate that an important manifestation of WIFF arises in the presence of fracture connectivity. The corresponding energy loss, which can be significant for both P- and S-waves, is mainly due to fluid flow within the connected fractures and is sensitive to the permeabilities as well as the lengths and intersection angles of the fractures. Correspondingly, this phenomenon contains valuable information on the governing hydraulic properties of fractured rocks and hence should be accounted for whenever realistic seismic models of such media are needed.

Keywords

fractured rocks / seismic attenuation / WIFF / fracture connectivity / embedding matrix / Biot’s theory

Cite this article

Download citation ▾
J. Germán Rubino, Beatriz Quintal, Tobias M. Müller, Luis Guarracino, Ralf Jänicke, Holger Steeb, Klaus Holliger. Energy dissipation of P- and S-waves in fluid-saturated rocks: An overview focusing on hydraulically connected fractures. Journal of Earth Science, 2015, 26(6): 785-790 DOI:10.1007/s12583-015-0613-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bakulin A., Grechka V., Tsvankin I. Estimation of Fracture Parameters from Reflection Seismic Data—Part I: HTI Model due to a Single Fracture Set. Geophysics, 2000, 65(6): 1788-1802.

[2]

Berkowitz B., Bour O., Davy P., . Scaling of Fracture Connectivity in Geological Formations. Geophysical Research Letters, 2000, 27(14): 2061-2064.

[3]

Physical Review E, 2001, 64 1

[4]

Biot M. A. General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 1941, 12(2): 155-164.

[5]

Biot M. A. Mechanics of Deformation and Acoustic Propagation in Porous Media. Journal of Applied Physics, 1962, 33(4): 1482-1498.

[6]

Brajanovski M., Gurevich B., Schoenberg M. A Model for P-wave Attenuation and Dispersion in a Porous Medium Permeated by Aligned Fractures. Geophysical Journal International, 2005, 163(1): 372-384.

[7]

Chapman M. Frequency-Dependent Anisotropy due to Meso-Scale Fractures in the Presence of Equant Porosity. Geophysical Prospecting, 2003, 51(5): 369-379.

[8]

Clark R. A., Benson P. M., Carter A. J., . Anisotropic P-Wave Attenuation Measured from a Multi-Azimuth Surface Seismic Reflection Survey. Geophysical Prospecting, 2009, 57(5): 835-845.

[9]

Holliger K., Bühnemann J. Attenuation of Broad-Band (50–1 500 Hz) Seismic Waves in Granitic Rocks near the Earth’ Surface. Geophysical Research Letters, 1996, 23(15): 1981-1984.

[10]

Jänicke R., Quintal B., Steeb H. Numerical Homogenization of Mesoscopic Loss in Poroelastic Media. European Journal of Mechanics-A/Solids, 2015, 49: 382-395.

[11]

Maultzsch S., Chapman M., Liu E. R., . Modelling Frequency-Dependent Seismic Anisotropy in Fluid-Saturated Rock with Aligned Fractures: Implication of Fracture Size Estimation from Anisotropic Measurements. Geophysical Prospecting, 2003, 51(5): 381-392.

[12]

Nakagawa S., Schoenberg M. A. Poroelastic Modeling of Seismic Boundary Conditions across a Fracture. The Journal of the Acoustical Society of America, 2007, 122(2): 831-847.

[13]

Nelson R. Geologic Analysis of Naturally Fractured Reservoirs, 2001 Woburn: Gulf Professional Publishing, 332.

[14]

Peacock S., McCann C., Sothcott J., . Experimental Measurements of Seismic Attenuation in Microfractured Sedimentary Rock. Geophysics, 1994, 59(9): 1342-1351.

[15]

Quintal B., Steeb H., Frehner M., . Quasi-Static Finite Element Modeling of Seismic Attenuation and Dispersion due to Wave-Induced Fluid Flow in Poroelastic Media. Journal of Geophysical Research, 2011, 116 1 B01201.

[16]

Quintal B., Steeb H., Frehner M., . Pore Fluid Effects on S-Wave Attenuation Caused by Wave-Induced Fluid Flow. Geophysics, 2012, 77(3): L13-L23.

[17]

Quintal B., Jänicke R., Rubino J. G., . Sensitivity of S-Wave Attenuation to the Connectivity of Fractures in Fluid-Saturated Rocks. Geophysics, 2014, 79(5): WB15-WB24.

[18]

Rubino J. G., Ravazzoli C. L., Santos J. E. Equivalent Viscoelastic Solids for Heterogeneous Fluid-Saturated Porous Rocks. Geophysics, 2009, 74(1): N1-N13.

[19]

Rubino J. G., Guarracino L., Müller T. M., . Do Seismic Waves Sense Fracture Connectivity?. Geophysical Research Letters, 2013, 40(4): 692-696.

[20]

Rubino J. G., Müller T. M., Guarracino L., . Seismoacoustic Signatures of Fracture Connectivity. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2252-2271.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/