Iron biomineralization controls on geophysical signatures of hydrocarbon contaminated sediments

Estella A. Atekwana , Gamal Z. Abdel Aal

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 835 -843.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 835 -843. DOI: 10.1007/s12583-015-0611-2
Article

Iron biomineralization controls on geophysical signatures of hydrocarbon contaminated sediments

Author information +
History +
PDF

Abstract

The interpretation of geophysical data from mature hydrocarbon contaminated sites has relied on a conductive plume model where the conductivity of the subsurface contaminant volume is the result of microbial mediated changes in pore fluid chemistry. This conductive anomalous region is characterized by high total dissolved solids and occurs within the water table fluctuation zone where microbial activity is the maximum. Here we update this conductive plume model by providing new insights from recent laboratory investigations and geophysical data from hydrocarbon contaminated sites suggesting the unrecognized role of the impact that microbial-mediated metallic mineral precipitates have on geophysical signatures. We show that microbial redox processes (e.g., iron and sulfate reduction) during the biodegradation process involve mineralogical transformations and the precipitation of new minerals (e.g., magnetite, and pyrite) that can impact the electrical and magnetic properties of contaminated sediments. We provide examples from laboratory experiments and field studies and suggest that knowledge of the dominant redox processes occurring at hydrocarbon contaminated sites and the mineral phases formed is critical for a more robust interpretation of geophysical data associated with microbial-mediated changes at hydrocarbon contaminated sites. We also show that integration of both magnetic and electrical techniques may help reduce ambiguity in data interpretation.

Keywords

hydrocarbon / redox processes / magnetic susceptibility / bioremediation / conductivity

Cite this article

Download citation ▾
Estella A. Atekwana, Gamal Z. Abdel Aal. Iron biomineralization controls on geophysical signatures of hydrocarbon contaminated sediments. Journal of Earth Science, 2015, 26(6): 835-843 DOI:10.1007/s12583-015-0611-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel Aal G. Z., Atekwana E. A., Revil A. Geophysical Signatures of Disseminated Iron Minerals: A Proxy for Understanding Subsurface Biophysicochemical Processes. Journal of Geophysical Research: Biogeosciences, 2014, 119(9): 1831-1849.

[2]

Allen J. P., Atekwana E. A., Atekwana E. A., . The Microbial Community Structure in Petroleum-Contaminated Sediments Corresponds to Geophysical Signatures. Applied and Environmental Microbiology, 2007, 73(9): 2860-2870.

[3]

Anderson R. T., Lovley D. R. Anaerobic Bioremediation of Benzene under Sulfate-Reducing Conditions in a Petroleum-Contaminated Aquifer. Environmental Science & Technology, 2000, 34(11): 2261-2266.

[4]

Atekwana E. A., Atekwana E. A. Geophysical Signatures of Microbial Activity at Hydrocarbon Contaminated Sites: A Review. Surveys in Geophysics, 2009, 31(2): 247-283.

[5]

Atekwana E. A., Mewafy F. M., Aal G. A., . High-Resolution Magnetic Susceptibility Measurements for Investigating Magnetic Mineral Formation during Microbial Mediated Iron Reduction. Journal of Geophysical Research: Biogeosciences, 2014, 119(1): 80-94.

[6]

Atekwana E. A., Sauck W. A., Aal G. Z. A., . Geophysical Investigation of Vadose Zone Conductivity Anomalies at a Hydrocarbon Contaminated Site: Implications for the Assessment of Intrinsic Bioremediation. Journal of Environmental and Engineering Geophysics, 2002, 7(3): 103-110.

[7]

Atekwana E. A., Werkema D. D., Duris J. W., . In-situ Apparent Conductivity Measurements and Microbial Population Distribution at a Hydrocarbon-Contaminated Site. Geophysics, 2004, 69(1): 56-63.

[8]

Atlas R. M., Bartha R. Microbial Ecology: Fundamentals and Applications, 1997, 4

[9]

Beaver C. L., Williams A. E., Atekwana E. A., . Microbial Communities Associated with Zones of Elevated Magnetic Susceptibility in Hydrocarbon-Contaminated Sediments, 2015

[10]

Bekins B. A., Cozzarelli I. M., Godsy E. M., . Progression of Natural Attenuation Processes at a Crude Oil Spill Site: II. Controls on Spatial Distribution of Microbial Populations. Journal of Contaminant Hydrology, 2001, 53(3–4): 387-406.

[11]

Bennett P. C., Hiebert F. K., Choi W. J. Microbial Colonization and Weathering of Silicates in a Petroleum-Contaminated Groundwater. Chemical Geology, 1996, 132(1–4): 45-53.

[12]

Cassidy D. P., Hudak A. J., Werkema D. D., . In Situ Rhamnolipid Production at an Abandoned Petroleum Refinery. Soil and Sediment Contamination, 2002, 11(5): 769-787.

[13]

Chapelle F. H. Ground Water Microbiology and Geochemistry, 2001 New York: John Wiley & Sons

[14]

Che-Alota V., Atekwana E. A., Atekwana E. A., . Temporal Geophysical Signatures from Contaminant-Mass Remediation. Geophysics, 2009, 74(4): B113-B123.

[15]

Cozzarelli I. M., Bekins B. A., Baedecker M. J., . Progression of Natural Attenuation Processes at a Crude Oil Spill Site: I. Geochemical Evolution of the Plume. Journal of Contaminant Hydrology, 2001, 53(3–4): 369-385.

[16]

Dearing J. A., Maher B. A., Oldfield F. Richards K. S., Arnett R. R., Ellis S. K. Geomorphological Linkages between Soils and Sediments: The Role of Magnetic Measurements. Geomorphology and Soils, 1985 London: George Allen and Wnwin, 441.

[17]

Fahrenfeld N., Cozzarelli I. M., Bailey Z., . Insights into Biodegradation through Depth-Resolved Microbial Community Functional and Structural Profiling of a Crude-Oil Contaminant Plume. Microbial Ecology, 2014, 68(3): 453-462.

[18]

Fredrickson J. K., Zachara J. M., Kennedy D. W., . Biogenic Iron Mineralization Accompanying the Dissimilatory Reduction of Hydrous Ferric Oxide by a Groundwater Bacterium. Geochimica et Cosmochimica Acta, 1998, 62(19–20): 3239-3257.

[19]

Lesmes D. P., Frye K. M. Influence of Pore Fluid Chemistry on the Complex Conductivity and Induced Polarization Responses of Berea Sandstone. Journal of Geophysical Research, 2001, 106(B3): 4079-4090.

[20]

Lovley D. R., Baedecker M. J., Lonergan D. J., . Oxidation of Aromatic Contaminants Coupled to Microbial Iron Reduction. Nature, 1989, 339(6222): 297-300.

[21]

Mewafy F. M., Atekwana E. A., Werkema D. D., . Magnetic Susceptibility as a Proxy for Investigating Microbially Mediated Iron Reduction. Geophysical Research Letters, 2011, 38 21 21402

[22]

Mewafy F. M., Werkema D. D., Atekwana E. A., . Evidence that Bio-Metallic Mineral Precipitation Enhances the Complex Conductivity Response at a Hydrocarbon Contaminated Site. Journal of Applied Geophysics, 2013, 98: 113-123.

[23]

Mullins C. E. Magnetic Susceptibility of the Soil and its Significance in Soil Science—A Review. Journal of Soil Science, 1977, 28(2): 223-246.

[24]

National Research Council NRC Natural Attenuation for Groundwater Remediation, 2000 Washington, D.C.: National Academy Press

[25]

Ntarlagiannis D., Williams K. H., Slater L., . Low-Frequency Electrical Response to Microbial Induced Sulfide Precipitation. Journal of Geophysical Research, 2005, 110 02009

[26]

Orozco A. F., Williams K. H., Long P. E., . Using Complex Resistivity Imaging to Infer Biogeochemical Processes Associated with Bioremediation of an Uranium-Contaminated Aquifer. Journal of Geophysical Research, 2011, 116 03001

[27]

Pelton W. H., Ward S. H., Hallof P. G., . Mineral Discrimination and Removal of Inductive Coupling with Multifrequency IP. Geophysics, 1978, 43(3): 588-609.

[28]

Pérez-Guzmán L., Bogner K. R., Lower B. H. Earth’s Ferrous Wheel. Nature Education Knowledge, 2012, 3 10 32.

[29]

Revil A., Glover P. W. J. Nature of Surface Electrical Conductivity in Natural Sands, Sandstones, and Clays. Geophysical Research Letters, 1998, 25(5): 691-694.

[30]

Revil A., Karaoulis M., Johnson T., . Review: Some Low-Frequency Electrical Methods for Subsurface Characterization and Monitoring in Hydrogeology. Hydrogeology Journal, 2012, 20(4): 617-658.

[31]

Rijal M. L., Appel E., Petrovský E., . Change of Magnetic Properties due to Fluctuations of Hydrocarbon Contaminated Groundwater in Unconsolidated Sediments. Environmental Pollution, 2010, 158(5): 1756-1762.

[32]

Sauck W. A. A Model for the Resistivity Structure of LNAPL Plumes and Their Environs in Sandy Sediments. Journal of Applied Geophysics, 2000, 44(2–3): 151-165.

[33]

Schön J. H. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Handbook of Geophysical Exploration: Seismic Exploration, 1996, 18 583.

[34]

Vinegar H. J., Waxman M. H. Induced Polarization of Shaly Sands. Geophysics, 1984, 49(8): 1267-1287.

[35]

Werkema D. Investigating the Geoelectrical Response of Hydrocarbon Contamination Undergoing Biodegradation. Geophysical Research Letters, 2003, 30(12): 1647-1651.

[36]

Williams K. H., Kemna A., Wilkins M. J., . Geophysical Monitoring of Coupled Microbial and Geochemical Processes during Stimulated Subsurface Bioremediation. Environmental Science & Technology, 2009, 43(17): 6717-6723.

[37]

Williams K. H., Ntarlagiannis D., Slater L. D., . Geophysical Imaging of Stimulated Microbial Biomineralization. Environmental Science & Technology, 2005, 39(19): 7592-7600.

[38]

Wu Y. X., Slater L. D., Korte N. Effect of Precipitation on Low Frequency Electrical Properties of Zerovalent Iron Columns. Environmental Science & Technology, 2005, 39(23): 9197-9204.

[39]

Wu Y. X., Versteeg R., Slater L., . Calcite Precipitation Dominates the Electrical Signatures of Zero Valent Iron Columns under Simulated Field Conditions. Journal of Contaminant Hydrology, 2009, 106(3–4): 131-143.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/