Quantitative multi-layer electromagnetic induction inversion and full-waveform inversion of crosshole ground penetrating radar data

Jan van der Kruk , Nils Gueting , Anja Klotzsche , Guowei He , Sebastian Rudolph , Christian von Hebel , Xi Yang , Lutz Weihermüller , Achim Mester , Harry Vereecken

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 844 -850.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 844 -850. DOI: 10.1007/s12583-015-0610-3
Article

Quantitative multi-layer electromagnetic induction inversion and full-waveform inversion of crosshole ground penetrating radar data

Author information +
History +
PDF

Abstract

Due to the recent system developments for the electromagnetic characterization of the subsurface, fast and easy acquisition is made feasible due to the fast measurement speed, easy coupling with GPS systems, and the availability of multi-channel electromagnetic induction (EMI) and ground penetrating radar (GPR) systems. Moreover, the increasing computer power enables the use of accurate forward modeling programs in advanced inversion algorithms where no approximations are used and the full information content of the measured data can be exploited. Here, recent developments of large-scale quantitative EMI inversion and full-waveform GPR inversion are discussed that yield higher resolution of quantitative medium properties compared to conventional approaches. In both cases a detailed forward model is used in the inversion procedure that is based on Maxwell’s equations. The multi-channel EMI data that have different sensing depths for the different source-receiver offset are calibrated using a short electrical resistivity tomography (ERT) calibration line which makes it possible to invert for electrical conductivity changes with depth over large areas. The crosshole GPR full-waveform inversion yields significant higher resolution of the permittivity and conductivity images compared to ray-based inversion results.

Keywords

ground penetrating radar / electromagnetic induction / full-waveform inversion

Cite this article

Download citation ▾
Jan van der Kruk, Nils Gueting, Anja Klotzsche, Guowei He, Sebastian Rudolph, Christian von Hebel, Xi Yang, Lutz Weihermüller, Achim Mester, Harry Vereecken. Quantitative multi-layer electromagnetic induction inversion and full-waveform inversion of crosshole ground penetrating radar data. Journal of Earth Science, 2015, 26(6): 844-850 DOI:10.1007/s12583-015-0610-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Water Resources Research, 2008, 44 4

[2]

Ernst J. R. Ma.u.r.e.r. H., Green A. G., . Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell’s Equations. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(9): 2807-2828.

[3]

Gueting N., Klotzsche A., van der Kruk J., . Imaging and Characterization of Facies Heterogeneity in an Alluvial Aquifer Using GPR Full-Waveform Inversion and Cone Penetration Tests. Journal of Hydrology, 2015, 524: 680-695.

[4]

Klotzsche A., van der Kruk J., Bradford J., . Detection of Spatially Limited High-Porosity Layers Using Crosshole GPR Signal Analysis and Full-Waveform Inversion. Water Resources Research, 2014, 50(8): 6966-6985.

[5]

Klotzsche A., van der Kruk J., Linde N., . 3-D Characterization of High-Permeability Zones in a Gravel Aquifer Using 2-D Crosshole GPR Full-Waveform Inversion and Waveguide Detection. Geophysical Journal International, 2013, 195(2): 932-944.

[6]

Klotzsche A., van der Kruk J., Meles G. A., . Full-Waveform Inversion of Cross-Hole Ground-Penetrating Radar Data to Characterize a Gravel Aquifer Close to the Thur River, Switzerland. Near Surface Geophysics, 2010, 8(1750): 631-646.

[7]

Klotzsche A., van der Kruk J., Meles G. A., . Crosshole GPR Full-Waveform Inversion of Waveguides Acting as Preferential Flow Paths within Aquifer Systems. Geophysics, 2012, 77(4): H57-H62.

[8]

Kurzmann A., Przebindowska A., Kohn D., . Acoustic Full Waveform Tomography in the Presence of Attenuation: A Sensitivity Analysis. Geophysical Journal International, 2013, 195(2): 985-1000.

[9]

Lavoué F., Brossier R., Metivier L., . Two-Dimensional Permittivity and Conductivity Imaging by Full Waveform Inversion of Multioffset GPR Data: A Frequency-Domain Quasi-Newton Approach. Geophysical Journal International, 2014, 197(1): 248-268.

[10]

Lavoué F., van der Kruk J., Rings J., . Electromagnetic Induction Calibration Using Apparent Electrical Conductivity Modelling Based on Electrical Resistivity Tomography. Near Surface Geophysics, 2010, 8(1750): 3-11.

[11]

Meles G. A., Greenhalgh S. A., van der Kruk J., . Taming the Non-Linearity Problem in GPR Full-Waveform Inversion for High Contrast Media. Journal of Applied Geophysics, 2011, 73(2): 174-186.

[12]

Meles G. A., van der Kruk J., Greenhalgh S. A., . A New Vector Waveform Inversion Algorithm for Simultaneous Updating of Conductivity and Permittivity Parameters from Combination Crosshole/Borehole-To-Surface GPR Data. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3391-3407.

[13]

Mester A., van der Kruk J., Zimmermann E., . Quantitative Two-Layer Conductivity Inversion of Multi-Configuration Electromagnetic Induction Measurements. Vadose Zone Journal, 2011, 10(4): 1319-1330.

[14]

Monteiro Santos F. A., Triantafilis J., Bruzgulis K. E., . Inversion of Multiconfiguration Electromagnetic (DUALEM-421) Profiling Data Using a One-Dimensional Laterally Constrained Algorithm. Vadose Zone Journal, 2010, 9(1): 117-125.

[15]

Nüsch A. K., Dietrich P., Werban U., . Acquisition and Reliability of Geophysical Data in Soil Science. 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, 2010, 21-24.

[16]

Oberröhrmann M., Klotzsche A., Vereecken H., . Optimization of Acquisition Setup for Cross-Hole GPR Full-Waveform Inversion Using Checkerboard Analysis. Near Surface Geophysics, 2013, 11(1967): 197-209.

[17]

Robinson D. A., Lebron I., Lesch S. M., . Minimizing Drift in Electrical Conductivity Measurements in High Temperature Environments Using the EM-38. Soil Science Society of America Journal, 2004, 68(2): 339-345.

[18]

Rudolph S., van der Kruk J., von Hebel C., . Linking Satellite Derived LAI Patterns with Subsoil Heterogeneity Using Large-Scale Ground-Based Electromagnetic Induction Measurements. Geoderma, 2015, 241–242: 262-271.

[19]

Saey T. D., Smedt P. D., Islam M. M., . Depth Slicing of Multi-Receiver EMI Measurements to Enhance the Delineation of Contrasting Subsoil Features. Geoderma, 2012, 189–190: 514-521.

[20]

Stadler A., Rudolph S., Kupisch M., . Quantifying the Effects of Soil Variability on Crop Growth Using Apparent Soil Electrical Conductivity Measurements. European Journal of Agronomy, 2015, 64: 8-20.

[21]

Geophysics, 2009, 74 6

[22]

von Hebel C. V., Rudolph S., Mester A., . Three-Dimensional Imaging of Subsurface Structural Patterns Using Quantitative Large-Scale Multiconfiguration Electromagnetic Induction Data. Water Resources Research, 2014, 50(3): 2732-2748.

[23]

Yang X., Klotzsche A., Meles G. A., . Improvements in Crosshole GPR Full-Waveform Inversion and Application on Data Measured at the Boise Hydrogeophysics Research Site. Journal of Applied Geophysics, 2013, 99: 114-124.

[24]

Yang X., van der Kruk J., Bikowski J., . Frequency-Domain Full-Waveform Inversion of GPR Data. Near-Surface Geophysics and Environment Protection, 2013, 8409(12): 344-348.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/