Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries

Robert Tenzer, Mohammad Bagherbandi

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 1045-1053.

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 1045-1053. DOI: 10.1007/s12583-015-0608-x
Special Column on Tectonics of Turkey and Iran and Comparison with Other Tethyan Domains

Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries

Author information +
History +

Abstract

The results of global and regional studies often show significant disagreement between the Moho depths determined using seismic and isostatic models. In this study, we estimate the differences between these two models in central Eurasia. The Vening Meinesz-Moritz (VMM) inverse problem of isostasy is utilized to determine the isostatic Moho depths. The estimated VMM Moho depths are then corrected for the sediment density contrast. The application of this correction improves the agreement between the isostatic and seismic Moho models. The existing discrepancies between the isostatic and seismic models are finally modeled by applying the non-isostatic correction, which accounts for the unmodelled mantle density heterogeneities and other geodynamic processes, which are not taken into account in classical isostatic models. Our results reveal that the non-isostatic correction still cannot fully describe mechanisms affecting the Moho geometry along the convergent continent-tocontinent tectonic plate boundaries occurring beneath Himalayas despite an overall good performance of the applied method.

Keywords

crust / gravity / Himalaya / isostasy / Moho interface / Tibetan Plateau

Cite this article

Download citation ▾
Robert Tenzer, Mohammad Bagherbandi. Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries. Journal of Earth Science, 2016, 27(6): 1045‒1053 https://doi.org/10.1007/s12583-015-0608-x

References

Airy G. B. On the Computations of the Effect of the Attraction of the Mountain Masses as Disturbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys, 1855, 145.
Allègre C. J., Courtillot V., Tapponier P., . Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 1984, 307: 17-22.
CrossRef Google scholar
Bassin C., Laske G., Masters T. G. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 2000, 81 F897.
Bagherbandi M. A Comparison of Three Gravity Inversion Methods for Crustal Thickness Modelling in Tibet Plateau. J. Asian Earth Sci., 2012, 43(1): 89-97.
CrossRef Google scholar
Bagherbandi M., Sjöberg L. E. Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics. Earth Planet. Inter., 2012, 200/201: 37-44.
CrossRef Google scholar
Bagherbandi M., Tenzer R., Sjöberg L. E., . Improved Global Crustal Thickness Modeling Based on the VMM Isostatic Model and Non-Isostatic Gravity Correction. J. Geodyn., 2013, 66: 25-37.
CrossRef Google scholar
Braitenberg C., Zadro M., Fang J., . Gravity Inversion in Quinghai-Tibet Plateau. Phys. Chem. Earth, 2000, 25: 381-386.
CrossRef Google scholar
Braitenberg C., Zadro M., Fang J., . The Gravity and Isostatic Moho Undulations in Qinghai-Tibet Plateau. J. Geodyn., 2000, 30: 489-505.
CrossRef Google scholar
Braitenberg C., Wienecke S., Wang Y. Basement Structures from Satellite-Derived Gravity Field: South China Sea Ridge. J. Geophys. Res., 2006, 111 B05407
CrossRef Google scholar
Caporali A. Gravity Anomalies and the Flexure of the Lithosphere in the Karakoram, Pakistan. J. Geophys. Res., 1995, 100: 15075-15085.
CrossRef Google scholar
Caporali A. Gravimetric Constraints on the Rheology of the Indian and Tarim Plates in the Karakoram Continent Collision Zone. J. Asian Earth Sci., 1998, 16: 313-321.
CrossRef Google scholar
Caporali A. Buckling of the Lithosphere in Western Himalaya: Constraints from Gravity and Topography Data. J. Geophys. Res., 2000, 105: 3103-3113.
CrossRef Google scholar
Dziewonski A. M., Anderson D. L. Preliminary Reference Earth Model. Physics. Earth Planet. Inter., 1981, 25: 297-356.
CrossRef Google scholar
Gao R., Lu Z., Li Q., . Geophysical Survey and Geodynamic Study of Crust and Upper Mantle in the Qinghai-Tibet Plateau. Episode, 2005, 28(4): 263-273.
Gladkikh V., Tenzer R. A Mathematical Model of the Global Ocean Saltwater Density Distribution. Pur. Appl. Geophys., 2011, 169(1/2): 249-257.
Hayford J. F. The Figure of the Earth and Isostasy from Measurements in the United States, USCGS, 1909
Hayford J. F., Bowie W. The Effect of Topography and Isostatic Compensation upon the Intensity of Gravity, 1912, 10 132.
Heiskanen W. A., Vening-Meinesz F. A. The Earth and Its Gravity Field, 1958
Heiskanen W. A., Moritz H. Physical Geodesy, 1967
Hinze W. J. Bouguer Reduction Density, Why 2.67. Geophysics, 2003, 68(5): 1559-1560.
CrossRef Google scholar
Hirn A., Lepine J. C., Jobert T. G., . Crust Structure and Variability of the Himalayan Border of Tibet. Nature, 1984, 307(5946): 23-25.
CrossRef Google scholar
Kaban M. K., Schwintzer P., Tikhotsky S. A. Global Isostatic Gravity Model of the Earth. Geophys. J. Int., 1999, 136: 519-536.
CrossRef Google scholar
Kaban M. K., Schwintzer P., Artemieva I. M., . Density of the Continental Roots: Compositional and Thermal Contributions. Earth Planet. Sci. Lett., 2003, 209: 53-69.
CrossRef Google scholar
Kaban M. K., Schwintzer P., Reigber C. A New Isostatic Model of the Lithosphere and Gravity Field. J. Geodn., 2004, 78: 368-385.
CrossRef Google scholar
Kind R., Ni J., Zhao W., . Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet. Science, 1996, 274: 1692-1694.
CrossRef Google scholar
Kind R., Yuan X., Saul J., . Seismic Images of Crust and Upper Mantle beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 2002, 298: 1219-1221.
CrossRef Google scholar
Lyon-Caen H., Molnar P. Constraints on the Structure of the Himalaya from an Analysis of Gravity Anomalies and a Flexural Model of the Lithosphere. J. Geophys. Res., 1983, 88: 8171-8191.
CrossRef Google scholar
Lyon-Caen H., Molnar P. Gravity Anomalies and the Structure of Western Tibet and the Southern Tarim Basin. Geophys. Res. Lett., 1984, 11: 1251-1254.
CrossRef Google scholar
Mayer-Guerr T., Rieser D., Höck E., . The New Combined Satellite only Model GOCO03s. International Symposium on Gravity, Geoid and Height Systems 2012, 2012
Moritz H. Advanced Physical Geodesy, 1980
Moritz H. The Figure of the Earth, 1990
Novák P. High Resolution Constituents of the Earth Gravitational Field. Surv. Geoph., 2010, 31(1): 1-21.
CrossRef Google scholar
Pavlis N. K., Factor J. K., Holmes S. A. Forsberg R. Terrain-Related Gravimetric Quantities Computed for the Next EGM. Gravity Field of the Earth, 2007
Pavlis N. K., Holmes S. A., Kenyon S. C., . The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res, 2012, 117 B04406
CrossRef Google scholar
Pratt J. H. On the Attraction of the Himalaya Mountains and of the Elevated Regions beyond upon the Plumb-Line in India. Trans. Roy. Soc., 1855, 145.
Rai S. S., Priestley K., Gaur V. K. Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys. Res. Lett., 2006, 33 L15308
CrossRef Google scholar
Schulte-Pelkum V., Monsalve G., Sheehan A., . Imaging the Indian Subcontinent beneath the Himalaya. Nature, 2005, 435: 1222-1225.
CrossRef Google scholar
Sjöberg L. E. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophys. J. Int., 2009, 179(3): 1527-1536.
CrossRef Google scholar
Sjöberg L. E., Bagherbandi M. A Method of Estimating the Moho Density Contrast with a Tentative Application by EGM08 and CRUST2.0. Acta Geophys., 2011, 59(3): 502-525.
CrossRef Google scholar
Tenzer R., Abdalla A., Vajda P. H. The Spherical Harmonic Representation of the Gravitational Field Quantities Generated by the Ice Density Contrast. Contributions to Geophysics and Geodesy, 2010, 40(3): 207-223.
CrossRef Google scholar
Tenzer R., Bagherbandi M. Reformulation of the Vening-Meinesz Moritz Inverse Problem of Isostasy for Isostatic Gravity Disturbances. Inter. J. Geosciences, 2012, 3(5): 918-929.
CrossRef Google scholar
Tenzer R., Bagherbandi M., Hwang C., . Moho Interface Modeling beneath Himalayas, Tibet and Central Siberia Using GOCO02S and DTM2006.0. Terrestrial, Atmospheric and Oceanic Sciences, 2013, 24(4): 581-590.
CrossRef Google scholar
Tenzer R., Novák P., Gladkikh V. On the Accuracy of the Bathymetry-Generated Gravitational Field Quantities for a Depth-Dependent Seawater Density Distribution. Studia Geophys. Geodaet., 2011, 55(4): 609-626.
CrossRef Google scholar
Tenzer R., Novák P., Vajda P., . Spectral Harmonic Analysis and Synthesis of Earth’s Crust Gravity Field. Comput. Geosc., 2012, 16(1): 193-207.
CrossRef Google scholar
Tenzer R., Gladkikh V., Vajda P., . Spatial and Spectral Analysis of Refined Gravity Data for Modelling the Crust-Mantle Interface and Mantle-Lithosphere Structure. Surv. Geophys., 2012, 33(5): 817-839.
CrossRef Google scholar
Tenzer R., Novák P., Gladkikh V. The Bathymetric Stripping Corrections to Gravity Field Quantities for a Depth-Dependant Model of the Seawater Density. Marine Geodesy, 2012, 35: 198-220.
CrossRef Google scholar
Tenzer R., Vajda P. H. Global Maps of the CRUST2.0 Crustal Components Stripped Gravity Disturbances. J. Geophys. Res., 2009
Vening-Meinesz F. A. A New Method for Regional Isostatic Reduction of Gravity. Bull. Geod., 1931, 29: 33-51.
CrossRef Google scholar
Watts A. B. Isostasy and Flexure of the Lithosphere, 2001, 458.
Wienecke S., Braitenberg C., Götze H.-J. A New Analytical Solution Estimating the Flexural Rigidity in the Central Andes. Geophys. J. Int., 2007, 169(3): 789-794.
CrossRef Google scholar
Wittlinger G., Vergne J., Tapponnier P., . Teleseismic Imaging of Subducting Lithosphere and Moho Offsets beneath Western Tibet. Earth Planet. Sci. Lett., 2004, 221: 117-130.
CrossRef Google scholar
Wu G., Xiao X., Li T. Yadong to Golmud Transect, Qinghai-Tibet Plateau, China. Am. Geophys. Union, 1991, 1-32.
Zeng R. S., Ding Z. F., Wu Q. J. A Review of the Lithospheric Structure in Tibetan Plateau and Constraints for Dynamics. Acta Geophys. Sinica, 1994, 37: 99-116.
Zeng R. S., Teng J. W., Li Y. K., . Crustal Velocity Structure and Eastward Escaping of Crustal Material in the Southern Tibet. Science in China Series D: Earth Sciences, 2002, 32(10): 793-798.
Zhang Z. J., Li Y. K., Wang G. J., . E-W Crustal Structure under the Northern Tibet Revealed by Wide-Angle Seismic Profiles. Science in China Series D: Earth Sciences, 2001, 31(11): 881-888.
Zhao W.-J., Nelson K. D. Project INDEPTH Tea. Deep Seismic Reflection Evidence for Continental Underthrusting beneath Southern Tibet. Nature, 1993, 366: 557-559.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/