Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries

Robert Tenzer , Mohammad Bagherbandi

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 1045 -1053.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 1045 -1053. DOI: 10.1007/s12583-015-0608-x
Special Column on Tectonics of Turkey and Iran and Comparison with Other Tethyan Domains

Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries

Author information +
History +
PDF

Abstract

The results of global and regional studies often show significant disagreement between the Moho depths determined using seismic and isostatic models. In this study, we estimate the differences between these two models in central Eurasia. The Vening Meinesz-Moritz (VMM) inverse problem of isostasy is utilized to determine the isostatic Moho depths. The estimated VMM Moho depths are then corrected for the sediment density contrast. The application of this correction improves the agreement between the isostatic and seismic Moho models. The existing discrepancies between the isostatic and seismic models are finally modeled by applying the non-isostatic correction, which accounts for the unmodelled mantle density heterogeneities and other geodynamic processes, which are not taken into account in classical isostatic models. Our results reveal that the non-isostatic correction still cannot fully describe mechanisms affecting the Moho geometry along the convergent continent-tocontinent tectonic plate boundaries occurring beneath Himalayas despite an overall good performance of the applied method.

Keywords

crust / gravity / Himalaya / isostasy / Moho interface / Tibetan Plateau

Cite this article

Download citation ▾
Robert Tenzer, Mohammad Bagherbandi. Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries. Journal of Earth Science, 2016, 27(6): 1045-1053 DOI:10.1007/s12583-015-0608-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Airy G. B. On the Computations of the Effect of the Attraction of the Mountain Masses as Disturbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys, 1855, 145.

[2]

Allègre C. J., Courtillot V., Tapponier P., . Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 1984, 307: 17-22.

[3]

Bassin C., Laske G., Masters T. G. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 2000, 81 F897.

[4]

Bagherbandi M. A Comparison of Three Gravity Inversion Methods for Crustal Thickness Modelling in Tibet Plateau. J. Asian Earth Sci., 2012, 43(1): 89-97.

[5]

Bagherbandi M., Sjöberg L. E. Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics. Earth Planet. Inter., 2012, 200/201: 37-44.

[6]

Bagherbandi M., Tenzer R., Sjöberg L. E., . Improved Global Crustal Thickness Modeling Based on the VMM Isostatic Model and Non-Isostatic Gravity Correction. J. Geodyn., 2013, 66: 25-37.

[7]

Braitenberg C., Zadro M., Fang J., . Gravity Inversion in Quinghai-Tibet Plateau. Phys. Chem. Earth, 2000, 25: 381-386.

[8]

Braitenberg C., Zadro M., Fang J., . The Gravity and Isostatic Moho Undulations in Qinghai-Tibet Plateau. J. Geodyn., 2000, 30: 489-505.

[9]

Braitenberg C., Wienecke S., Wang Y. Basement Structures from Satellite-Derived Gravity Field: South China Sea Ridge. J. Geophys. Res., 2006, 111 B05407

[10]

Caporali A. Gravity Anomalies and the Flexure of the Lithosphere in the Karakoram, Pakistan. J. Geophys. Res., 1995, 100: 15075-15085.

[11]

Caporali A. Gravimetric Constraints on the Rheology of the Indian and Tarim Plates in the Karakoram Continent Collision Zone. J. Asian Earth Sci., 1998, 16: 313-321.

[12]

Caporali A. Buckling of the Lithosphere in Western Himalaya: Constraints from Gravity and Topography Data. J. Geophys. Res., 2000, 105: 3103-3113.

[13]

Dziewonski A. M., Anderson D. L. Preliminary Reference Earth Model. Physics. Earth Planet. Inter., 1981, 25: 297-356.

[14]

Gao R., Lu Z., Li Q., . Geophysical Survey and Geodynamic Study of Crust and Upper Mantle in the Qinghai-Tibet Plateau. Episode, 2005, 28(4): 263-273.

[15]

Gladkikh V., Tenzer R. A Mathematical Model of the Global Ocean Saltwater Density Distribution. Pur. Appl. Geophys., 2011, 169(1/2): 249-257.

[16]

Hayford J. F. The Figure of the Earth and Isostasy from Measurements in the United States, USCGS, 1909

[17]

Hayford J. F., Bowie W. The Effect of Topography and Isostatic Compensation upon the Intensity of Gravity, 1912, 10 132.

[18]

Heiskanen W. A., Vening-Meinesz F. A. The Earth and Its Gravity Field, 1958

[19]

Heiskanen W. A., Moritz H. Physical Geodesy, 1967

[20]

Hinze W. J. Bouguer Reduction Density, Why 2.67. Geophysics, 2003, 68(5): 1559-1560.

[21]

Hirn A., Lepine J. C., Jobert T. G., . Crust Structure and Variability of the Himalayan Border of Tibet. Nature, 1984, 307(5946): 23-25.

[22]

Kaban M. K., Schwintzer P., Tikhotsky S. A. Global Isostatic Gravity Model of the Earth. Geophys. J. Int., 1999, 136: 519-536.

[23]

Kaban M. K., Schwintzer P., Artemieva I. M., . Density of the Continental Roots: Compositional and Thermal Contributions. Earth Planet. Sci. Lett., 2003, 209: 53-69.

[24]

Kaban M. K., Schwintzer P., Reigber C. A New Isostatic Model of the Lithosphere and Gravity Field. J. Geodn., 2004, 78: 368-385.

[25]

Kind R., Ni J., Zhao W., . Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet. Science, 1996, 274: 1692-1694.

[26]

Kind R., Yuan X., Saul J., . Seismic Images of Crust and Upper Mantle beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 2002, 298: 1219-1221.

[27]

Lyon-Caen H., Molnar P. Constraints on the Structure of the Himalaya from an Analysis of Gravity Anomalies and a Flexural Model of the Lithosphere. J. Geophys. Res., 1983, 88: 8171-8191.

[28]

Lyon-Caen H., Molnar P. Gravity Anomalies and the Structure of Western Tibet and the Southern Tarim Basin. Geophys. Res. Lett., 1984, 11: 1251-1254.

[29]

Mayer-Guerr T., Rieser D., Höck E., . The New Combined Satellite only Model GOCO03s. International Symposium on Gravity, Geoid and Height Systems 2012, 2012

[30]

Moritz H. Advanced Physical Geodesy, 1980

[31]

Moritz H. The Figure of the Earth, 1990

[32]

Novák P. High Resolution Constituents of the Earth Gravitational Field. Surv. Geoph., 2010, 31(1): 1-21.

[33]

Pavlis N. K., Factor J. K., Holmes S. A. Forsberg R. Terrain-Related Gravimetric Quantities Computed for the Next EGM. Gravity Field of the Earth, 2007

[34]

Pavlis N. K., Holmes S. A., Kenyon S. C., . The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res, 2012, 117 B04406

[35]

Pratt J. H. On the Attraction of the Himalaya Mountains and of the Elevated Regions beyond upon the Plumb-Line in India. Trans. Roy. Soc., 1855, 145.

[36]

Rai S. S., Priestley K., Gaur V. K. Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys. Res. Lett., 2006, 33 L15308

[37]

Schulte-Pelkum V., Monsalve G., Sheehan A., . Imaging the Indian Subcontinent beneath the Himalaya. Nature, 2005, 435: 1222-1225.

[38]

Sjöberg L. E. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophys. J. Int., 2009, 179(3): 1527-1536.

[39]

Sjöberg L. E., Bagherbandi M. A Method of Estimating the Moho Density Contrast with a Tentative Application by EGM08 and CRUST2.0. Acta Geophys., 2011, 59(3): 502-525.

[40]

Tenzer R., Abdalla A., Vajda P. H. The Spherical Harmonic Representation of the Gravitational Field Quantities Generated by the Ice Density Contrast. Contributions to Geophysics and Geodesy, 2010, 40(3): 207-223.

[41]

Tenzer R., Bagherbandi M. Reformulation of the Vening-Meinesz Moritz Inverse Problem of Isostasy for Isostatic Gravity Disturbances. Inter. J. Geosciences, 2012, 3(5): 918-929.

[42]

Tenzer R., Bagherbandi M., Hwang C., . Moho Interface Modeling beneath Himalayas, Tibet and Central Siberia Using GOCO02S and DTM2006.0. Terrestrial, Atmospheric and Oceanic Sciences, 2013, 24(4): 581-590.

[43]

Tenzer R., Novák P., Gladkikh V. On the Accuracy of the Bathymetry-Generated Gravitational Field Quantities for a Depth-Dependent Seawater Density Distribution. Studia Geophys. Geodaet., 2011, 55(4): 609-626.

[44]

Tenzer R., Novák P., Vajda P., . Spectral Harmonic Analysis and Synthesis of Earth’s Crust Gravity Field. Comput. Geosc., 2012, 16(1): 193-207.

[45]

Tenzer R., Gladkikh V., Vajda P., . Spatial and Spectral Analysis of Refined Gravity Data for Modelling the Crust-Mantle Interface and Mantle-Lithosphere Structure. Surv. Geophys., 2012, 33(5): 817-839.

[46]

Tenzer R., Novák P., Gladkikh V. The Bathymetric Stripping Corrections to Gravity Field Quantities for a Depth-Dependant Model of the Seawater Density. Marine Geodesy, 2012, 35: 198-220.

[47]

Tenzer R., Vajda P. H. Global Maps of the CRUST2.0 Crustal Components Stripped Gravity Disturbances. J. Geophys. Res., 2009

[48]

Vening-Meinesz F. A. A New Method for Regional Isostatic Reduction of Gravity. Bull. Geod., 1931, 29: 33-51.

[49]

Watts A. B. Isostasy and Flexure of the Lithosphere, 2001, 458.

[50]

Wienecke S., Braitenberg C., Götze H.-J. A New Analytical Solution Estimating the Flexural Rigidity in the Central Andes. Geophys. J. Int., 2007, 169(3): 789-794.

[51]

Wittlinger G., Vergne J., Tapponnier P., . Teleseismic Imaging of Subducting Lithosphere and Moho Offsets beneath Western Tibet. Earth Planet. Sci. Lett., 2004, 221: 117-130.

[52]

Wu G., Xiao X., Li T. Yadong to Golmud Transect, Qinghai-Tibet Plateau, China. Am. Geophys. Union, 1991, 1-32.

[53]

Zeng R. S., Ding Z. F., Wu Q. J. A Review of the Lithospheric Structure in Tibetan Plateau and Constraints for Dynamics. Acta Geophys. Sinica, 1994, 37: 99-116.

[54]

Zeng R. S., Teng J. W., Li Y. K., . Crustal Velocity Structure and Eastward Escaping of Crustal Material in the Southern Tibet. Science in China Series D: Earth Sciences, 2002, 32(10): 793-798.

[55]

Zhang Z. J., Li Y. K., Wang G. J., . E-W Crustal Structure under the Northern Tibet Revealed by Wide-Angle Seismic Profiles. Science in China Series D: Earth Sciences, 2001, 31(11): 881-888.

[56]

Zhao W.-J., Nelson K. D. Project INDEPTH Tea. Deep Seismic Reflection Evidence for Continental Underthrusting beneath Southern Tibet. Nature, 1993, 366: 557-559.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/