Affine & scale-invariant heterogeneous pyramid features for automatic matching of high resolution pushbroom imagery from Chang’e 2 satellite

Sheng Yang , Shibing Zhu , Zhenju Li , Xuejun Li , Tao Liu , Jue Wang , Jianwei Xie

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 716 -726.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (4) : 716 -726. DOI: 10.1007/s12583-015-0605-0
Article

Affine & scale-invariant heterogeneous pyramid features for automatic matching of high resolution pushbroom imagery from Chang’e 2 satellite

Author information +
History +
PDF

Abstract

The automatic feature extracting and matching for large amount of linear pushbroom imagery with higher and higher resolution is urgent and challenging in three dimensional reconstructions, remote sensing and mapping. Affine & scale-invariant heterogeneous pyramid feature is proposed in this paper, along with the new scale-invariant analysis method, the detecting of the key points, the affine & scale-invariant descriptor, the steering method of the matching, and the quasi-dense matching algorithm based on the extensive epipolar geometry. The automatic matching is devised for the linear pushbroom imagery. The whole process is executed on lunar images of the highest resolution of ~7 m/pixel (or ~1 m/pixel in the lower orbits) from the Chinese Chang’e 2 satellite, it runs robustly at present, and resulting in large amounts of well-distributed-correspondences with accuracy of 0.3 pixels and excellent reliability, which gives great support for the further exploration both on the Moon and the Earth.

Keywords

image matching / linear pushbroom imagery / epipolar geometry / quasi-dense matching

Cite this article

Download citation ▾
Sheng Yang, Shibing Zhu, Zhenju Li, Xuejun Li, Tao Liu, Jue Wang, Jianwei Xie. Affine & scale-invariant heterogeneous pyramid features for automatic matching of high resolution pushbroom imagery from Chang’e 2 satellite. Journal of Earth Science, 2016, 27(4): 716-726 DOI:10.1007/s12583-015-0605-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai H. P., Lei L., Su Y. An Affine Invariant Region Detector Using the 4th Differential Invariant. ICTAI2007. 19th IEEE International Conference on IEEE, 2007, 1: 540-543.

[2]

Dawson M. D., Todd N. S., Lofgren G. Integration of Apollo Lunar Sample Data into Google Moon, 2010, 1-8.

[3]

Di K. C., Yue Z. Y., Liu Z. Q., . Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data. Journal of Earth Science, 2013, 24: 125-135.

[4]

Gupta R., Hartley R. I. Linear Pushbroom Cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(9): 963-975.

[5]

Gwinner K., Scholten F., Spiegel M., . Derivation and Validation of High-Resolution Digital Terrain Models from Mars Express HRSC-Data. Photogramm. Eng. Remote Sens., 2009, 75(9): 1127-1142.

[6]

Heipke C., Oberst J., Albertz J., . Evaluating Planetary Digital Terrain Models—The HRSC DTM Test. Planetary and Space Science, 2007, 55(14): 2173-2191.

[7]

Jaumann R., Neukum G., Behnke T., . The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise through the Nominal Mission. Planetary and Space Science, 2007, 55(7): 928-952.

[8]

Ji D. C., Li X. J., Xie J. W. A Hierarchical Aerial Photography Matching Algorithm. Journal of the Academy of Equipment Command & Technology, 2008, 4: 73-76.

[9]

Juan L., Gwun O. A Comparison of SIFT, PCA-SIFT and SURF. International Journal of Image Processing, 2009, 3(4): 143-152.

[10]

Ke, Y., Sukthankar, R., 2004. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors//Computer Vision and Pattern Recognition, 2004 (CVPR 2004). Proceedings of the2004 IEEE Computer Society Conference on IEEE, 2: II-506-II-513

[11]

Kim T. A Study on the Epipolarity of Linear Pushbroom Images. Photogrammetric Engineering and Remote Sensing, 2000, 66(8): 961-966.

[12]

Kirk R. L., Archinal B. A., Gaddis L. R., . Cartography for Lunar Exploration: 2008 Status and Mission Plans. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, XXXVII(B4): 1472-1489.

[13]

Lee H. Y., Park W. A New Epipolarity Model Based on the Simplified Push-Broom Sensor Model. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34(4): 631-636.

[14]

Li C. L., Liu J. J., Ren X., . The Global Image of the Moon by the Chang’e-1: Data Processing and Lunar Cartography. Sci. China Earth Sci., 2010, 3: 294-306.

[15]

Li J., Allinson N. M. A Comprehensive Review of Current Local Features for Computer Vision. Neurocomputing, 2008, 71(10): 1771-1787.

[16]

Lindeberg T. Scale-Space Theory: A Basic Tool for Analyzing Strucures at Different Scale. Journal of Applied Statistics, 1994, 21: 225-270.

[17]

Liu F. J., Yang R., Zhang Y., . Distribution of Olivine and Pyroxene Derived from Clementine Data in Crater Copernicus. Journal of Earth Science, 2011, 22(5): 586-594.

[18]

Lowe D. G. Distinctive Image Features from Scale-Invariant Keypoints. Computer Vision, 2004, 2: 91-110.

[19]

Mikolajczyk K., Tuytelaars T., Schmid C., . A Comparison of Affine Region Detectors. International Journal of Computer Vision, 2005, 65(1–2): 43-72.

[20]

Morgan M. F. Epipolar Resampling of Linear Array Scanner Scenes: [Dissertation], 2004

[21]

Shen R. J., Li X. J. Automatic Selenograph Production-New Direction of the Lunar Remote Sensor Data Processing. Journal of the Academy of Equipment Command & Technology, 2010, 1-5.

[22]

Su J. Y. Study of SPOT Epipolar Image Polynomial Fitting Based on Matching Constraint. Remote Sensing Information, 2002, 4: 10-15.

[23]

Tuytelaars T., Van G. L. Matching Widely Separated Views Based on Affine Invariant Regions. International Journal of Computer Vision, 2004, 59(1): 61-85.

[24]

Xie J. R., Beigi M. S. A Scale-Invariant Local Descriptor for Event Recognition in 1D Sensor Signals//Multimedia and Expo, ICME2009. IEEE International Conference on IEEE, 2009, 1226-1229.

[25]

Xu W. Y., Huang X. S. Analysis of Image Registration Technique for Recovering Large Rotation, Translation and Scale Parameters. Signal Processing, 2009, 25(10): 1598-1604.

[26]

Yang S., Li X. J. Accelerating Matching Based on Improved SIFT for Selenograph. Proceedings of International Conference on Computer Design and Applications, Xi’an, 2011, 530-533.

[27]

Yang S., Li X. J., Liu T., . A Review on Matching and Similarity Measures for High Resolution Remote Sensing Imagery. Geomatics & Spatial Information Technology, 2013, 36(5): 16-21.

[28]

Yang S., Li X. J., Wang J., . Continuous Scale Multi-Change Detecting Quasi-Dense Matching for Epipolar Resample Images. Computer Technology and Development, 2013, 23(4): 111-114.

[29]

Yang S., Li X. J., Xie J. W., . Quasi-dense Matching of Selenograph Based on Image Waves. Proceedings of the 31st Chinese Control Conference, IEEE, Hefei, 2012, 5607-5612.

[30]

Yokoya N. Dense Matching of Two Views with Large Displacement//Image Processing,1994. Proceedings ICIP-94. IEEE International Conference, 1994, 213-217.

[31]

Zhang G., Pan H., Jiang W., . Epipolar Resampling and Epipolar Geometry Reconstruction of Linear Array Scanner Scenes Based on RPC Model. Remote Sensing for Land & Resources, 2010, 4: 1-5.

[32]

Zoltan M. Dense Matching Methods for 3D Scene Reconstruction from Wide Baseline Images: [Dissertation]. Eotvos Lorand University, Budapest, 2009, 33-75.

AI Summary AI Mindmap
PDF

301

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/