Ages, trace elements and Hf-isotopic compositions of zircons from claystones around the Permian-Triassic boundary in the Zunyi Section, South China: Implications for nature and tectonic setting of the volcanism

Qiuling Gao , Zhong-Qiang Chen , Ning Zhang , William L. Griffin , Wenchen Xia , Guoqing Wang , Tengfei Jiang , Xuefei Xia , Suzanne Y. O’Reilly

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 872 -882.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 872 -882. DOI: 10.1007/s12583-015-0589-9
Article

Ages, trace elements and Hf-isotopic compositions of zircons from claystones around the Permian-Triassic boundary in the Zunyi Section, South China: Implications for nature and tectonic setting of the volcanism

Author information +
History +
PDF

Abstract

A growing body of evidence shows that volcanism near the Permian-Triassic boundary (PTB) may be crucial in triggering the Permian–Triassic (P–Tr) mass extinction. Thus, the ash beds near the PTB in South China may carry information on this event. Three volcanic ash layers, altered to clay, outcropped in the PTB beds in Zunyi Section, Guizhou Province, Southwest China. The U-Pb ages, trace elements, and Hf-isotope compositions of zircon grains from these three ash beds were analyzed using LA-ICPMS and LA-MC-ICPMS. The zircons are mainly magmatic in origin (241-279 Ma) except for two inherited/xenocrystic zircons (939 and 2 325 Ma). The ages of these magmatic zircons indicate three episodes of magmatism which occurred around the Middle- Late Permian boundary (~261.5 Ma, MLPB), the Wuchiapingian-Changhsingian boundary (~254.5 Ma, WCB), and the PTB (~250.5 Ma), respectively. The first two episodes of magmatism near the MLPB and WCB may be attributed to magmatic inheritance or re-deposition. All magmatic zircons share similar trace-element and Hf-isotope compositions. They have Y, Hf, Th and U contents and Nb/Ta ratios are typical of zircons from silicic calc-alkaline magmas. These zircons also exhibit enriched Hf-isotope compositions with εHf(t) values of -11.4 to +0.2, which suggests that the three magmatic episodes involved melting of the continental crust. The more enriched Hf-isotope composition (εHf(t)=-11.4- -4.8) of Bed ZY13 (~250.5 Ma) implies more input of ancient crustal material in the magma. Integration of the Hf-isotope and trace-element compositions of magmatic zircons suggest that these three episodes of magmatism may take place along the convergent continent margin in or near southwestern South China as a result of the closure of the Palaeo-Tethys Ocean.

Keywords

Permian-Triassic boundary / zircon / trace elements / Hf isotope / silicic volcanism / convergent continental margin / South China

Cite this article

Download citation ▾
Qiuling Gao, Zhong-Qiang Chen, Ning Zhang, William L. Griffin, Wenchen Xia, Guoqing Wang, Tengfei Jiang, Xuefei Xia, Suzanne Y. O’Reilly. Ages, trace elements and Hf-isotopic compositions of zircons from claystones around the Permian-Triassic boundary in the Zunyi Section, South China: Implications for nature and tectonic setting of the volcanism. Journal of Earth Science, 2015, 26(6): 872-882 DOI:10.1007/s12583-015-0589-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali J. R., Fitton J. G., Herzberg C. Emeishan Large Igneous Province (SW China) and the Mantle-Plume Up-Doming Hypothesis. Journal of the Geological Society, 2010, 167(5): 953-959.

[2]

Ali J. R., Thompson G. M., Zhou M. F., . Emeishan Large Igneous Province, SW China. Lithos, 2005, 79(3–4): 475-489.

[3]

Arndt N., Chauvel C., Czamanske G., . Two Mantle Sources, Two Plumbing Systems: Tholeiitic and Alkaline Magmatism of the Maymecha River Basin, Siberian Flood Volcanic Province. Contributions to Mineralogy and Petrology, 1998, 133(3): 297-313.

[4]

Belousova E. A., Griffin W. L., O’Reilly S. Y., . Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 2002, 143: 602-622.

[5]

Bowring S. A., Erwin D. H., Jin Y. G., . U/Pb Zircon Geochronology of the End-Permian Mass Extinction. Science, 1998, 280: 1039-1045.

[6]

Cai J. X., Zhang K. J. A New Model for the Indochina and South China Collision during the Late Permian to the Middle Triassic. Tectonophysics, 2009, 467(1–4): 35-43.

[7]

Campbell I. H., Czamanske G. K., Fedorenko V. A., . Synchronism of the Siberian Traps and the Permian-Triassic Boundary. Science, 1992, 258(5089): 1760-1763.

[8]

Chatterjee N., Bhattacharji S. A Preliminary Geochemical Study of Zircons and Monazites from Deccan Felsic Dikes, Rajula, Gujarat, India: Implications for Crustal Melting. Proceedings of the Indian Academy of Sciences—Earth and Planetary Sciences, 2004, 113(4): 533-542.

[9]

Chen Z.-Q., Benton M. J. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 2012, 5: 375-383.

[10]

Chen Z.-Q., Tong J., Zhang K., . Environmental and Biotic Turnover across the Permian-Triassic Boundary on a Shallow Carbonate Platform in Western Zhejiang, South China. Australian Journal of Earth Sciences, 2009, 56(6): 775-797.

[11]

Chen Z.-Q., Yang H., Luo M., . Complete Biotic and Sedimentary Records of the Permian-Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth-Science Reviews, 2015, 149: 63-103.

[12]

Erwin D. H. Extinction: How Life on Earth nearly Ended 250 Million Years Ago, 2006 Princeton: Princeton University Press

[13]

Gao Q. L., Zhang N., Xia W. C., . Origin of Volcanic Ash Beds across the Permian-Triassic Boundary, Daxiakou, South China: Petrology and U-Pb Age, Trace Elements and Hf-Isotope Composition of Zircon. Chemical Geology, 2013, 361: 41-53.

[14]

Grimes C. B., John B. E., Kelermen P. B., . Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 2007, 35: 643-646.

[15]

He B., Zhong Y. T., Xu Y. G., . Triggers of Permo-Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo-Tethys Ignimbrite Flare-Up?. Lithos, 2014, 204: 258-267.

[16]

Hoa T. T., Anh T. T., Phuong N. T., . Permo-Triassic Intermediate-Felsic Magmatism of the Truong Son Belt, Eastern Margin of Indochina. Comptes Rendus Geoscience, 2008, 340(2–3): 112-126.

[17]

Isozaki Y., Shimizu N., Yao J., . End-Permian Extinction and Volcanism-Induced Environmental Stress: The Permian-Triassic Boundary Interval of Lower-Slope Facies at Chaotian, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1–2): 218-238.

[18]

Jiang H. S., Lai X. L., Luo G. M., . Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global and Planetary Change, 2007, 55: 39-55.

[19]

Jiang H. S., Lai X. L., Sun Y. D., . Permian–Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End-Permian Mass Extinction. Journal of Earth Science, 2014, 25: 413-430.

[20]

Kamo S. L., Czamanske G. K., Amelin Y., . Rapid Eruption of Siberian Flood-Volcanic Rocks and Evidence for Coincidence with the Permian-Triassic Boundary and Mass Extinction at 251 Ma. Earth and Planetary Science Letters, 2003, 214(1–2): 75-91.

[21]

Lepvrier C., Maluski H. v., Tich V., . The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif): Implications for the Geodynamic Evolution of Indochina. Tectonophysics, 2004, 393(1–4): 87-118.

[22]

Luo G. M., Wang Y. B., Yang H., . Stepwise and Large-Magnitude Negative Shift in Delta C-13 (carb) Preceded the Main Marine Mass Extinction of the Permian–Triassic Crisis Interval. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1–2): 70-82.

[23]

Malitch K. N., Belousova E. A., Griffin W. L., . Hafnium-Neodymium Constraints on Source Heterogeneity of the Economic Ultramafic-Mafic Noril’sk-1 Intrusion (Russia). Lithos, 2012, 164: 36-46.

[24]

McDonough W. F., Sun S. S. The Composition of the Earth. Chemical Geology, 1995, 120: 223-253.

[25]

Mundil R., Ludwig K. R., Metcalfe I., . Age and Timing of the Permian Mass Extinctions: U/Pb Dating of Closed-System Zircons. Science, 2004, 305(5691): 1760-1763.

[26]

Mundil R., Metcalfe I., Ludwig K. R., . Timing of the Permian–Triassic Biotic Crisis: Implications from New Zircon U/Pb Age Data (and Their Limitations). Earth and Planetary Science Letters, 2001, 187(1–2): 131-145.

[27]

Owada M., Osanai Y., Nakano N., . Crustal Anatexis and Formation of Two Types of Granitic Magmas in the Kontum Massif, Central Vietnam: Implications for Magma Processes in Collision Zones. Gondwana Research, 2007, 12(4): 428-437.

[28]

Payne J. L., Kump L. R. Evidence for Recurrent Early Triassic Massive Volcanism from Quantitative Interpretation of Carbon Isotope Fluctuations. Earth and Planetary Science Letters, 2007, 256(1–2): 264-277.

[29]

Pupin J. P. Granite Genesis Related to Geodynamics from Hf-Y in Zircon. Transactions of the Royal Society of Edinburgh-Earth Sciences, 2000, 91: 245-256.

[30]

Reichow M. K., Pringle M. S., Al’Mukhamedov A. I., . The Timing and Extent of the Eruption of the Siberian Traps Large Igneous Province: Implications for the End-Permian Environmental Crisis. Earth and Planetary Science Letters, 2009, 277(1–2): 9-20.

[31]

Renne P. R., Zhang Z. C., Richards M. A., . Synchrony and Causal Relations between Permian-Triassic Boundary Crisis and Siberian Flood Volcanism. Science, 1995, 269(5229): 1413-1416.

[32]

Shellnutt J. G., Wang C. Y., Zhou M. F., . Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. Journal of Asian Earth Sciences, 2009, 35(1): 45-55.

[33]

Shen J., Algeo T. J., Hu Q., . Negative C-Isotope Excursions at the Permian-Triassic Boundary Linked to Volcanism. Geology, 2012, 40(11): 963-966.

[34]

Shen J., Algeo T. J., Zhou L., . Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects. Geobiology, 2012, 10(1): 82-103.

[35]

Shen J., Algeo T. J., Hu Q., . Volcanism in South China during the Late Permian and Its Relationship to Marine Ecosystem and Environmental Changes. Global and Planetary Change, 2013, 105(Sl): 121-134.

[36]

Shen J., Algeo T. J., Zhang N., . Volcanically Induced Environmental Change at the Permian-Triassic Boundary (Xiakou, Hubei, South China): Related to West Siberian Coal-Field Methane Releases?. Journal of Asian Earth Sciences, 2013, 75: 95-109.

[37]

Shen S. Z., Crowley J. L., Wang Y., . Calibrating the End-Permian Mass Extinction. Science, 2011, 334(6061): 1367-1372.

[38]

Shen S. Z., Schneider J. W., Angiolini L., . The International Permian Timescale: March 2013 Update. New Mexico Museum of Natural History and Science, Bulletin, 2013, 60: 411-415.

[39]

Shnukov S. E., Andreev A. V., Savenok S. P. dmixture Elements in Zircons and Apatite: A Tool for Provenances Studies of Terrigenous Sedimentary Rocks. European Union of Geosciences (EUG 9), March 1997, Strasbourg, 1997, 16 597.

[40]

Song H. J., Tong J. N., Chen Z.-Q. Two Episodes of Foraminiferal Extinction near the Permian-Triassic Boundary at the Meishan Section, South China. Australian Journal of Earth Sciences, 2009, 56(6): 765-773.

[41]

Song H. J., Wignall P. B., Tong J. N., . Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 2013, 6: 52-56.

[42]

Trung N. M., Nuong N. D., Itaya T. Rb-Sr Isochron and K-Ar Ages of Igneous Rocks from the Samnua Depression Zone in Northern Vietnam. Journal of Mineralogical and Petrological Sciences, 2007, 102(2): 86-92.

[43]

Veevers J. J., Tewari R. C. Permian-Carboniserous and Permian-Triassic Magmatism in the Rift-Zone Bordering the Tethyan Margin of Southern Pangea. Geology, 1995, 23(5): 467-470.

[44]

Xie S. C., Pancost R. D., Huang J. H., . Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian-Triassic Crisis. Geology, 2007, 35(12): 1083-1086.

[45]

Xie S. C., Pancost R. D., Wang Y. B., . Cyanobacterial Blooms Tied to Volcanism during the 5 m.y. Permo-Triassic Biotic Crisis. Geology, 2010, 38(5): 447-450.

[46]

Xie S. C., Pancost R. D., Yin H. F., . Two Episodes of Microbial Change Coupled with Permo/Triassic Faunal Mass Extinction. Nature, 2005, 434(7032): 494-497.

[47]

Xu Y. G., Chung S. L., Shao H., . Silicic Magmas from the Emeishan Large Igneous Province, Southwest China: Petrogenesis and Their Link with the End-Guadalupian Biological Crisis. Lithos, 2010, 119(1–2): 47-60.

[48]

Xu Y. G., Luo Z. Y., Huang X. L., . Zircon U-Pb and Hf Isotope Constraints on Crustal Melting Associated with the Emeishan Mantle Plume. Geochimica et Cosmochimica Acta, 2008, 72(13): 3084-3104.

[49]

Yin H. F., Feng Q. L., Lai X. L., . The Protracted Permo-Triassic Crisis and Multi-Episode Extinction around the Permian-Triassic Boundary. Global and Planetary Change, 2007, 55(1–3): 1-20.

[50]

Yin H. F., Huang S. J., Zhang K. X., . Volcanism at the Permian-Triassic Boundary in South China and Its Effects on Mass Extinction. Acta Geologica Sinica, 1989, 62(2): 169-181.

[51]

Yin H. F., Huang S. J., Zhang K. X., . The Effects of Volcanism on the Permo-Triassic Mass Extingction in South China. Permo-Triassic Events in the Eastern Tethys: Sratigraphy, Classification, and Relations with the Western Tethys, 1992 Cambridge: Cambridge University Press

[52]

Yin H. F., Jiang H. S., Xia W. C., . The End-Permian Regression in South China and Its Implication on Mass Extinction. Earth-Science Reviews, 2014, 137: 19-33.

[53]

Yin H. F., Zhang K. X., Tong J. N., . The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 2001, 24(2): 102-114.

[54]

Zhang K. X., Lai X. L., Tong J. N., . Progresses on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 2009, 48(4): 485-495.

[55]

Zhang W., Wang L., Wang B., . Chronology, Geochemistry and Petrogenesis of Deqin Granodiorite Body in the Middle Section of Jiangda-Weixi Arc. Acta Petrologica Sinica, 2011, 27(9): 2577-2590.

[56]

Zhao G. C., Wilde S. A., Cawood P. A., . Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 2001, 107: 45-73.

[57]

Zhao L., Chen Z. Q., Algeo T. J., . Rare-Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis?. Global and Planetary Change, 2013, 105: 135-151.

[58]

Zhao L., Chen Y., Chen Z. Q., . Uppermost Permian to Lower Triassic Conodont Zonation from Three Gorges Area, South China. Palaios, 2013, 28: 523-540.

[59]

Zhong W. L. Conodont Biostratigraphy and Its Significance across the Permian-Triassic Boundary in North-Central Guizhou Province: [Dissertation], 2012 Wuhan: China University of Geosciences

[60]

Zhong Y. T., He B., Xu Y. G. Mineralogy and Geochemistry of Claystones from the Guadalupian-Lopingian Boundary at Penglaitan, South China: Insights into the Pre-Lopingian Geological Events. Journal of Asian Earth Sciences, 2013, 62: 438-462.

[61]

Zi J. W., Cawood P. A., Fan W. M., . Generation of Early Indosinian Enriched Mantle-Derived Granitoid Pluton in the Sanjiang Orogen (SW China) in Response to Closure of the Paleo-Tethys. Lithos, 2012, 140: 166-182.

[62]

Zolotukhin V. V., Al’Mukhamedov A. I. Macdougall J. D. Traps of the Siberian Platform. Continental Flood Basalts, 1988 Dordrech: Kluwer Academic Publishers, 273-310.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/