An object-oriented diagnostic model for the quantification of porewater geochemistry in marine sediments

Hong Ye , Tao Yang , Guorong Zhu , Shaoyong Jiang

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (5) : 648 -660.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (5) : 648 -660. DOI: 10.1007/s12583-015-0586-z
Article

An object-oriented diagnostic model for the quantification of porewater geochemistry in marine sediments

Author information +
History +
PDF

Abstract

The reaction-transport model is widely used to identify and quantify dissolved chemical species in sediment porewaters. In this paper, a modularized code framework of diagenetic model was proposed as a diagnostic tool to fit the porewater profiles in marine sediments. Based on the conservation principle of the finite volume method, we combined the discretized diagenetic equations with various geochemical reactions, including but not limited to methanogenesis, sulfate reduction, etc.. The code was organized in object-oriented FORTRAN and verified with literature parameters, which proved its robustness and effectiveness. Finally, three different sites (IODP Expedition 311 Site U1327, UBGH2-1_1, ODP Leg204 Site 1245) are exemplified as case studies.

Keywords

porewater / diagenesis / reaction-transport model

Cite this article

Download citation ▾
Hong Ye, Tao Yang, Guorong Zhu, Shaoyong Jiang. An object-oriented diagnostic model for the quantification of porewater geochemistry in marine sediments. Journal of Earth Science, 2015, 26(5): 648-660 DOI:10.1007/s12583-015-0586-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arndt S., Jørgensen B. B., LaRowe D. E., . Quantifying the Degradation of Organic Matter in Marine Sediments: A Review and Synthesis. Earth-Science Reviews, 2013, 123: 53-86.

[2]

Bear J. Dynamics of Fluids In Porous Media, 1972 New York: Elsevier, 764.

[3]

Berg P., Rysgaard S., Thamdrup B. Dynamic Modeling of Early Diagenesis and Nutrient Cycling: A Case Study in an Artic Marine Sediment. American Journal of Science, 2003, 303(10): 905-955.

[4]

Berner R. A. An Idealized Model of Dissolved Sulfate Distribution in Recent Sediments. Geochimica et Cosmochimica Acta, 1964, 28(9): 1497-1503.

[5]

Berner R. A. Early Diagenesis: A Theoretical Approach, 1980 Princeton: Princeton University Press, 241.

[6]

Bhatnagar G., Chapman W. G., Dickens G. R., . Generalization of Gas Hydrate Distribution and Saturation in Marine Sediments by Scaling of Thermodynamic and Transport Processes. American Journal of Science, 2007, 307(6): 861-900.

[7]

Boetius A., Ravenschlag K., Schubert C. J., . A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 2000, 407(6804): 623-626.

[8]

Borowski W. S., Paull C. K., III William U. Global and Local Variations of Interstitial Sulfate Gradients in Deep-Water, Continental Margin Sediments: Sensitivity to Underlying Methane and Gas Hydrates. Marine Geology, 1999, 159.

[9]

Boudreau B. P. On the Equivalence of Nonlocal and Radial-Diffusion Models for Porewater Irrigation. Journal of Marine Research, 1984, 42: 731-735.

[10]

Boudreau B. P. A Method-of-Lines Code for Carbon and Nutrient Diagenesis in Aquatic Sediments. Computers & Geosciences, 1996, 22(5): 479-496.

[11]

Boudreau B. P. Diagenetic Models and Their Implementation, 1997 Berlin: Springer

[12]

Boudreau B. P., Ruddick B. R. On a Reactive Continuum Representation of Organic Matter Diagenesis. American Journal of Science, 1991, 291: 507-538.

[13]

Boudreau B. P., Westrich J. T. The Dependence of Bacterial Sulfate Reduction on Sulfate Concentration in Marine Sediments. Geochimica et Cosmochimica Acta, 1984, 48(12): 2503-2516.

[14]

Burdige D. J. Geochemistry of Marine Sediments, 2006 Princeton: Princeton University Press

[15]

Chatterjee S., Dickens G. R., Bhatnagar G., . Pore Water Sulfate, Alkalinity, and Carbon Isotope Profiles in Shallow Sediment above Marine Gas Hydrate Systems: A Numerical Modeling Perspective. Journal of Geophysical Research, 2011, 116(B9): 2156-2202.

[16]

Conrad R. Quantification of Methanogenic Pathways Using Stable Carbon Isotopic Signatures: A Review and a Proposal. Organic Geochemistry, 2005, 36(5): 739-752.

[17]

Conrad R. The Global Methane Cycle: Recent Advances in Understanding the Microbial Processes Involved. Environmental Microbiology Reports, 2009, 1(5): 285-292.

[18]

Dale A. W., Aguilera D. R., Regnier P., . Seasonal Dynamics of the depth and Rate of Anaerobic Oxidation of Methane in Aarhus Bay (Denmark) Sediments. Journal of Marine Research, 2008, 66(1): 127-155.

[19]

Dale A. W., Regnier P., Van Cappellen P. Bioenergetic Controls on Anaerobic Oxidation of Methane (AOM) in Coastal Marine Sediments: A Theoretical Analysis. American Journal of Science, 2006, 306(4): 246-294.

[20]

Davie M. K., Buffett B. A. A Numerical Model for the Formation of Gas Hydrate below the Seafloor. Journal of Geophysical Research, 2001, 106(B1): 497-514.

[21]

Duan Z., Mao S. A Thermodynamic Model for Calculating Methane Solubility, Density and Gas Phase Composition of Methane-Bearing Aqueous Fluids from 273 to 523 K and from 1 to 2 000 bar. Geochimica et Cosmochimica Acta, 2006, 70(13): 3369-3386.

[22]

Emerson S., Hedges J. Chemical Oceanography and the Marine Carbon Cycle, 2008 Cambridge: Cambridge University Press, 462

[23]

Emerson S., Jahnke R., Heggie D. Sediment-Water Exchange in Shallow Water Estuarine Sediments. Journal of Marine Research, 1984, 42: 709-730.

[24]

Expedition 311 Scientists, 2006a. Expedition 311 Summary. In: Riedel, M., Collett, T. S., Malone, M. J., and the Expedition 311 Scientists, eds., Proc. IODP, 311: Washington, DC

[25]

Expedition 311 Scientists, 2006b. Site U1327. In: Riedel, M., Collett, T. S., Malone, M. J., and the Expedition 311 Scientists, eds., Proc. IODP, 311: Washington, DC

[26]

Froelich P. N., Klinkhammer G. P., Bender M. L., . Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic Suboxic Diagenesis. Geochimica et Cosmochimica Acta, 1979, 43: 1075-1090.

[27]

Higgins J. A., Fischer W. W., Schrag D. P. Oxygenation of the Ocean and Sediments: Consequences for the Seafloor Carbonate Factory. Earth and Planetary Science Letters, 2009, 284(1): 25-33.

[28]

Inskeep W. P., Bloom P. R. An Evaluation of Rate Equations for Calcite Precipitation Kinetics at pCO2 less than 0.01 atm and pH Greater than 8. Geochimica et Cosmochimica Acta, 1985, 49(10): 2165-2180.

[29]

Jakobsen R., Cold L. Geochemistry at the Sulfate Reduction-Methanogenesis Transition Zone in an Anoxic Aquifer—A Partial Equilibrium Interpretation using 2D Reactive Transport Modeling. Geochimica et Cosmochimica Acta, 2007, 71(8): 1949-1966.

[30]

Jørgensen B. B., Parkes R. J. Role of Sulfate Reduction and Methane Production by Organic Carbon Degradation in Eutrophic Fjord Sediments (Limfjorden, Denmark). Limnol. Oceanogr, 2010, 55(3): 1338-1352.

[31]

Kastner, M., Sample, J. C., Whiticar, M. J., et al., 1995. Geochemical Evidence for Fluid Flow and Diagenesis at the Cascadia Convergent Margin. Proceedings of the Ocean Drilling Program, Scientific Results, 146, No. Pt 1.

[32]

Kim J. H., Torres M. E., Hong W. L., . Pore Fluid Chemistry from the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2): Source, Mechanisms and Consequences of Fluid Freshening in the Central Part of the Ulleung Basin, East Sea. Marine and Petroleum Geology, 2013, 47: 99-112.

[33]

Luff R., Wallmann K. Fluid Flow, Methane Fluxes, Carbonate Precipitation and Biogeochemical Turnover in Gas Hydrate-Bearing Sediments at Hydrate Ridge, Cascadia Margin: Numerical Modeling and Mass Balances. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421.

[34]

Meister P., Liu B., Ferdelman T. G., . Control of Sulphate and Methane Distributions in Marine Sediments by Organic Matter Reactivity. Geochimica et Cosmochimica Acta, 2013, 104: 183-193.

[35]

Meysman F. J., Middelburg J. J., Herman P. M., . Reactive Transport in Surface Sediments. II. Media: An Object-Oriented Problem-Solving Environment for Early Diagenesis. Computers & Geosciences, 2003, 29(3): 301-318.

[36]

Middelburg J. J. A Simple Rate Model for Organic Matter Decomposition in Marine Sediments. Geochimica et Cosmochimica Acta, 1989, 53(7): 1577-1581.

[37]

Parkhurst D. L., Appelo C. A. J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations: U. S. Geological Survey Techniques and Methods. Book 6, 2013, 497.

[38]

Reeburgh W. S. Methane Consumption in Cariaco Trench Waters and Sediments. Earth and Planetary Science Letters, 1976, 28(3): 337-344.

[39]

Reeburgh W. S. Oceanic Methane Biogeochemistry. Chemical Reviews, 2007, 107(2): 486-513.

[40]

Regnier P., Dale A. W., Arndt S., . Quantitative Analysis of Anaerobic Oxidation of Methane (AOM) in Marine Sediments: A Modeling Perspective. Earth-Science Reviews, 2011, 106(1–2): 105-130.

[41]

Regnier P., Dale A. W., Pallud C., . Nützmann G., Viotti P., Aagaard P., . Incorporating Geomicrobial Processes in Reactive Transport Models of Subsurface Environments. Reactive Transport in Soil and Groundwater, 2005 Berlin Heidelberg: Springer, 109-125.

[42]

Reid, J. 2003. The New Features of Fortran, ISO/IEC JTC1/SC22/WG5N1579. http://j3-fortran.org/doc/WG5/N1551-N1600/N1579.pdf

[43]

Richter F. M., Liang Y. The Rate and Consequences of Sr Diagenesis in Deep-Sea Carbonates. Earth and Planetary Science Letters, 1993, 117(3): 553-565.

[44]

Ridgwell A., Hargreaves J. C., Edwards N. R., . Marine Geochemical Data Assimilation in an Efficient Earth System Model of Global Biogeochemical Cycling. Biogeosciences, 2007, 4(1): 87-104.

[45]

Rudnicki M. D., Elderfield H., Mottl M. J. Pore Fluid Advection and Reaction in Sediments of the Eastern Flank, Juan de Fuca Ridge, 48N. Earth and Planetary Science Letters, 2001, 187: 173-189.

[46]

Ryu B. J., Collett T. S., Riedel M., . Scientific Results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2). Marine and Petroleum Geology, 2013, 47: 1-20.

[47]

Saltelli A., Ratto M., Tarantola S., . Sensitivity Analysis for Chemical Models. Chemical Reviews, 2005, 105(7): 2811-2828.

[48]

Schultz H. D., Zabel M. Marine Geochemistry, 2006 Berlin: Springer, 593

[49]

Shipboard Scientific Party, 2003. Site 1245. In: Tréhu, A. M., Bohrmann, G., Rack, F. R., et al., Proc. ODP, Init. Repts., 204: College Station, TX (Ocean Drilling Program), 1–131

[50]

Thullner M., Regnier P., Van Cappellen P. Modeling Microbially Induced Carbon Degradation in Redox-Stratified Subsurface Environments: Concepts and Open Questions. Geomicrobiology Journal, 2007, 24(3–4): 139-155.

[51]

Torres M. E., McManus J., Hammond D. E., . Fluid and Chemical Fluxes in and out of Sediments Hosting Methane Hydrate Deposits on Hydrate Ridge, OR, I: Hydrological Provinces. Earth and Planetary Science Letters, 2002, 201.

[52]

Treude T., Boetius A., Knittel K., . Anaerobic Oxidation of Methane above Gas Hydrates at Hydrate Ridge, NE Pacific Ocean. Marine Ecology Progress Series, 2003, 264: 1-14.

[53]

Turchyn A. V., DePaolo D. J. Calcium Isotope Evidence for Suppression of Carbonate Dissolution in Carbonate-Bearing Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 2011, 75(22): 7081-7098.

[54]

Van Cappellen P., Wang Y. F. Cycling of Iron and Manganese in Surface Sediments: A General Theory for the Coupled Transport and Reaction of Carbon, Oxygen, Nitrogen, Sulfur, Iron, and Manganese. American Journal of Science, 1996, 296(3): 197-243.

[55]

Versteeg H. K., Malalasekera W. An Introduction to Computational Fluid Dynamics, 2007 Pearson Education Limited: The Finite Volume Method

[56]

Wegener G., Boetius A. An Experimental Study on Short-Term Changes in the Anaerobic Oxidation of Methane in Response to Varying Methane and Sulfate Fluxes. Biogeosciences, 2009, 6: 867-876.

[57]

Wortmann U. G., Chernyavsky B. M. The Significance of Isotope Specific Diffusion Coefficients for Reaction-Transport Models of Sulfate Reduction in Marine Sediments. Geochimica et Cosmochimica Acta, 2011, 75(11): 3046-3056.

[58]

Yang T., Jiang S., Ge L., . Geochemistry of Pore Waters from HQ-1PC of the Qiongdongnan Basin, Northern South China Sea, and Its Implications for Gas Hydrate Exploration. Science China Earth Sciences, 2013, 56(4): 521-529.

[59]

Zatsepin O. Y., Buffett B. A. Phase Equilibrium of Gas Hydrate: Implications for the Formation of Hydrate in the Deep Sea Floor. Geophysical Research Letters, 1997, 24(13): 1567-1570.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/