Geochemistry of enclaves and host granitoids from the kashan granitoid complex, central iran: Implications for enclave generation by interaction of cogenetic magmas

Maryam Honarmand , Nematollah Rashidnejad Omran , Franz Neubauer , Ghasem Nabatian , Mohammad Hashem Emami , Albrecht von Quadt , Yunpeng Dong , Manfred Bernroider

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (5) : 626 -647.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (5) : 626 -647. DOI: 10.1007/s12583-015-0584-1
Article

Geochemistry of enclaves and host granitoids from the kashan granitoid complex, central iran: Implications for enclave generation by interaction of cogenetic magmas

Author information +
History +
PDF

Abstract

The major and trace elements and Sr-Nd-Pb isotopes of Miocene host granitoid rocks and their mafic microgranular enclaves (MMEs) were studied to understand the petrogenesis of MMEs in the Kashan complex, which is part of the Urumieh-Dokhtar magmatic belt (Iran). The host rocks consist of quartz-diorite and tonalite associated with a dioritic intrusion. The enclaves show microgranular texture and the same mineralogy as their respective host with plagioclase, quartz and biotite. MMEs have a diorite to quartz-diorite composition and show geochemical characteristics mostly between their granitoid host and the diorite intrusion. Chondrite-normalized REE patterns of all samples are moderately fractionated [(La/Yb)N=2.1 to 12.9]. The MMEs display in part small negative Eu anomalies (Eu/Eu*=0.54 to 0.99), with enrichment of LILE and depletion of HFSE. The enclaves show emplacement depth of ~4 to 6 km which is comparable with the host rocks. Moreover, the Hornblende-plagioclase equilibrium temprature of MMEs yields average temperatures of 795°C which is slightly higher than the host ones. Identical mineral compositions and Nd-Sr-Pb isotopic features of MME-host granitoid pairs indicate interactions and parallel evolution of MME and enclosing granitoid in the Kashan plutons. Additionally, the geochemical and isotopic investigations of host and dioritic intrusions suggest a common source for their genesis. A thermal anomaly induced by underplated basic magma into a hot crust would have caused partial melting in the lower crust to generate Kashan granitoid rocks.

Keywords

magma interaction / mafic microgranular enclave / radiogenic isotopes / granitoid rocks / Kashan / Urumieh-Dokhtar magmatic belt

Cite this article

Download citation ▾
Maryam Honarmand, Nematollah Rashidnejad Omran, Franz Neubauer, Ghasem Nabatian, Mohammad Hashem Emami, Albrecht von Quadt, Yunpeng Dong, Manfred Bernroider. Geochemistry of enclaves and host granitoids from the kashan granitoid complex, central iran: Implications for enclave generation by interaction of cogenetic magmas. Journal of Earth Science, 2015, 26(5): 626-647 DOI:10.1007/s12583-015-0584-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbott Jr R. N. Muscovite-Bearing Granites in the AFM Liquidus Projection. Canadian Mineralogist, 1985, 23: 553-561.

[2]

Abbott Jr R. N., Clarke D. B. Hypothetical Liquidus Relationships in the Subsystem Al2O3-FeO-MgO Projected from Quartz, K-Feldspar and Plagioclase for a(H2O)<1. Canadian Mineralogist, 1979, 17: 549-560.

[3]

Agard P., Omrani J., Jolivet L., . Convergence History across Zagros (Iran): Constraints from Collisional and Earlier Deformation. International Journal of Earth Sciences (Geologische Rundschau), 2005, 94: 401-419.

[4]

Agard P., Jolivet L., Vrielynck B., . Plate Acceleration: The Obduction Trigger. Earth and Planetary Science Letters, 2007, 258: 428-441.

[5]

Akal C., Helvaci C. Mafic Microgranular Enclaves in the Kozak Granodiorite, Western Anatolia. Journal of Earth Science, 1991, 8: 1-17.

[6]

Alavi M. Tectonics of the Zagros Orogenic Belt of Iran: New Data and Interpretations. Tectonophysics, 1994, 229: 211-238.

[7]

Alavi M. Structures of the Zagros Fold-Thrust Belt in Iran. American Journal of Science, 2007, 307: 1064-1095.

[8]

Alfred T., Anderson J. R. Probable Relations between Plagioclase Zoning and Magma Dynamics, Fuego Volcano, Guatemala. American Mineralogist, 1984, 69: 660-676.

[9]

Allen C. M. Local Equilibrium of Mafic Enclaves and Granitoids of the Turtle Pluton, southeast California: Mmineral, Chemical, and Isotopic Evidence. American Mineralogist, 1991, 76: 574-588.

[10]

Barbarin B., Didier J. Genesis and Evolution of Mafic Microgranular Enclaves through Various Types of Interaction between Coexisting Felsic and Mafic Magmas. Transactions of the Royal Society, Edinburgh Earth Sciences, 1992, 83: 145-153.

[11]

Barbarin B. The Enclave Swarms in Some Granitoids of the Sierra Nevada Batholith, California: Indicators of Magma Interactions and Evolution. In: The Origins of Granites and Related Rocks, 3rd Hutton Symposium Abstract. U. S. Geological Survey Circular, 1995, 1129: 13-14.

[12]

Barbarin B. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 2005, 80: 155-177.

[13]

Barbarin B., Bateman P. C. Origin and Evolution of Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada. 14th International Mineralogical Association Meeting, 1986

[14]

Barbarin B., Didier J. Didier J., Barbarin B. Conclusions: Enclaves and Granite Petrology. Enclaves and Granite Petrology, 1991 Amsterdam: Elsevier, 545-549.

[15]

Bateman R., Martin M. P., Castro A. Mixing of Cordierite Granitoid and Pyroxene Gabbro, and Fractionation, in the Santa Olalla Tonalite (Andalucia). Lithos, 1992, 28: 111-131.

[16]

Bateman R. The Interplay between Crystallization, Replenishment and Hybridization in Large Felsic Magma Chambers. Earth-Science Reviews, 1995, 39: 91-106.

[17]

Baxter S., Feely M. Magma Mixing and Mingling Textures in Granitoid: Examples from the Galway Granite, Connemara, Irland. Mineralogy and Petrology, 2002, 76: 63-74.

[18]

Bender J. F., Hanson G. N., Bence A. E. The Cortland Complex: Evidence for Large Scale Liquid Immiscibility Involving Granodiorite and Diorite Magmas. Earth and Planetary Science Letters, 1982, 58: 330-344.

[19]

Berberian F., Muir I. D., Pankhurst R. J., . Late Cretaceous and Early Miocene Andean-Type Plutonic Activity in Northern Makran and Central Iran. Journal of the Geological Society of London, 1982, 139: 605-614.

[20]

Blake S., Koyaguchi T. Didier J., Barbarin B. Insights on the Magma Mixing Model from Volcanic Rocks. Enclaves and Granite Petrology, 1991 Amsterdam: Elsevier, 403-413.

[21]

Blundy J. D., Sparks R. S. J. Petrogenesis of Mafic Inclusions in Granitoids of the Adamelo Massif, Italy. Journal of Petrology, 1992, 33: 1039-1104.

[22]

Bonev N., Dilek Y., Hanchar J. M., . Nd-Sr-Pb Isotopic Composition and Mantle Sources of Triassic Rift Units in the Serbo-Macedonian and the Western Rhodope Massifs (Bulgaria-Greece). Geological Magazine, 2011, 149: 146-152.

[23]

Bottinga Y., Weill D. F. Densities of Liquid Silicate Systems Calculated from Partial Molar Volumes of Oxide Components. American Journal of Science, 1970, 269: 169-182.

[24]

Castro A., Moreno-Ventas I., De La Rosa J. D. H-Type (Hybrid) Granitoids: A Proposed Revision of the Granite-Type Classification and Nomenclature. Earth-Science Reviews, 1991, 31: 237-253.

[25]

Chappell B. W. Magma Mixing and the Production of Compo-Sitional Variation within Granite Suites: Evidence from the Granite of Southeastern Australia. Journal of Petrology, 1996, 37: 449-470.

[26]

Chen B., Chen Z. C., Jahn B. M. Origin of Mafic Enclaves from the Taihang Mesozoic Orogen, North China Craton. Lithos, 2009, 110: 343-358.

[27]

Clemens J. D., Wall V. J. Origin and Evolution of a Peraluminous Silicic Ignimbrite Suite: The Violet Town Volcanics. Lithos, 1984, 88: 354-371.

[28]

Collins W. J. Evaluation of Petrogenetic Models for Lachlan Fold Belt Granitoids: Implications for Crustal Architecture and Tectonic Models. Australian Journal of Earth Sciences, 1998, 45: 483-500.

[29]

Dahlquist J. A. Mafic Microgranular Enclaves: Early Segregation from Metaluminous Magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 2002, 15: 643-655.

[30]

Dercourt J., Zonenshain L. P., Ricou L. E., . Geological Evolution of the Tethys Belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics, 1986, 123: 241-315.

[31]

Didier J. Xu K. Q., Tu G. C. The Problem of Enclaves in GraniticRocks, a Review of Recent Ideas on their Origin. Geology of Granite and their Metallogenetic Relations. Proceedings international symposium, Nanjing, October 1982, 1984 Beijing: Science Press, 137-144.

[32]

Didier J., Barbarin B. Enclaves and Granite Petrology. Developments in Petrology 13, 1991 Amsterdam: Elsevier, 625.

[33]

Didier J. Granites and Their Enclaves, 1973 Amsterdam: Elsevier, 393.

[34]

Didier J. Contribution of Enclave Studies to the Understanding of Origin and Evolution of Granitic Magmas. Geologische Rundschau, 1987, 79: 41-50.

[35]

Dodge F. C. W., Kistler R. W. Some Additional Observations on Inclusions in the Granitic Rocks of the Sierra Nevada. Journal of Geophysical Research, 1990, 95: 17841-17848.

[36]

Dorais M. J., Whitney J. A., Roden M. F. Origin of Mafic Enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California. Journal of Petrology, 1990, 31: 853-881.

[37]

Eichelberger J. C. Andesitic Volcanism and Crustal Evolution. Nature, 1978, 275: 21-27.

[38]

Elburg M. A. Evidence of Isotopic Equilibration between Microgranitoid Enclaves and Host Granodiorite, Warburton Granodiorite, Lachlan Fold Belt, Australia. Lithos, 1996, 38: 1-22.

[39]

Enami M., Suzuki K., Liou J. G., . Al-Fe3+ and FOH Substitutions in Titanite and Constrains on Their PT Dependence. European Journal of Mineralogy, 1993, 5: 231-291.

[40]

Ersoy Y., Helvaci C. FC-AFC-FCA and Mixing Modeler: A Microsoft Excel Spreadsheet Program for Modeling Geochemical Differentiation of Magma by Crystal Fractionation, Crustal Assimilation and Mixing. Computers and Geosciences, 2010, 36: 383-390.

[41]

Fernandez A. N., Barbarin B. Didier J., Barbarin B. Relative Rheology of Coeval Mafic and Felsic Magmas: Nature of Resulting Interaction Processes. Shape and Mineral Fabrics of Mafic Microgranular Enclaves. Enclaves and Granite Petrology. Developments in Petrology, 1991 Amsterdam: Elsevier, 263-276.

[42]

Fershtater G. B., Borodina N. S. Didier J., Barbarin B. Enclaves in the Hercynian Granitoids of the Urals Mountains, USSR. Enclaves and Granite Petrology, 1991 Amsterdam: Elsevier, 83-94.

[43]

Flinders J., Clemens J. D. Brown M., Piccoli P. M. Non-Linear Dynamics and the Distribution and Compositions of Enclaves in Granitoid Magmas. The Origin of Granite and Related Rocks, 1995

[44]

Foster, 1960}. Interpretation of the Composition of Trioctahedral Micas. U.S. Geological Survey Professional Paper. 354(B): 1–4

[45]

Fourcade S., Allègre C. J. Trace Element Behavior in Granite Genesis: A Case Study. The Calc-Alkaline Plutonic Association from the Quérigut Complex (Pyrenees, France). Contributions to Mineralogy and Petrology, 1981, 76: 177-195.

[46]

Fourcade S., Javoy M. Didier J., Barbarin B. Sr-Nd-O Isotopic Features of Mafic Microgranular Enclaves and Host Granitoids from the Pyrenees, France: Evidence for their Hybrid Nature and Inference on their Origin. Enclaves and Granite Petrology. Developments in Petrology 13, 1991 Amsterdam: Elsevier, 345-364.

[47]

Frost T. P., Mahood G. A. Field, Chemical and Physical Constraints on Mafic-Felsic Magma Interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geological Society of America Bulletin, 1987, 99: 272-291.

[48]

Furman T., Spera T. Co-Mingling of Acid and Basic Magma with Implications for the Origin of Mafic I-Type Xenoliths, Field and Petrochemical Relations of a Usual Dike Complex at Eagle Peak Lake, Sequoia National Park, California, U.S.A.. Journal of Volcanology and Geothermal Research, 1985, 24: 151-178.

[49]

García-Moreno O., Castro A., Corretge L. G., . Dissolution of Tonalitic Enclaves in Ascending Hydrous Granitic Magmas: An Experimental Study. Lithos, 2006, 89: 245-258.

[50]

Hawkesworth C. J., Gallagher K., Herot J. M., . Mantle and Slab Contributions in Arc Magmas. Annual Review of Earth and Planetary Sciences, 1993, 21: 175-204.

[51]

Helmy H. M., Ahmed A. F., El Mahallawi M. M., . Pressure, Temperature and Oxygen Fugacity Conditions of Calc-Alkaline Granitoids, Eastern Desert of Egypt, and Tectonic Implications. Journal of African Earth Science, 2004, 38: 255-268.

[52]

Hibbard N. J. Didier J., Barbarin B. Textural Anatomy of Twelve Magma Mixed Granitoid Systems. Enclaves and Granite Petrology, 1991 Amsterdam: Elsevier, 95-112.

[53]

Holden P., Halliday A. N., Stephens W. E. Neodymium and Strontium Isotope Content of Microdiorite Enclaves Points to Mantle Input into Granitoid Production. Nature, 1987, 330: 53-56.

[54]

Holden P., Halliday A. N., Stephens W. E., . Chemical and Isotopic Evidence for Major Mass Transfer between Mafic Enclaves and Felsic Magma. Chemical Geology, 1991, 92: 135-152.

[55]

Holland T., Blundy J. Non-Ideal Interactions in Calcic-Amphiboles and their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 1994, 116: 433-447.

[56]

Holton T., Jamtveit B., Meakin P. Noise and Oscillatory Zoning of Minerals. Geochimica et Cosmochimica Acta, 1999, 64: 1893-1904.

[57]

Honarmand M. R., Omran N., Corfu F., . Geochronology and Magmatic History of a Calc-Alkaline Plutonic Complex in the Urumieh-Dokhtar Magmatic Belt, Central Iran: Zircon Ages as Evidence for Two Major Plutonic Episodes. Neues Jahrbuch für Mineralogie Abhandlungen, 2013, 190(1): 67-77.

[58]

Ilbeyli N., Pearce J. A. Petrogenesis of Igneous Enclaves in Plutonic Rocks of the Central Anatolian Crystalline Complex, Turkey. International Geology Review, 2005, 47: 1011-1034.

[59]

Karsli O., Chen B., Aydin F., . Geochemical and Sr-Nd-Pb Isotopic Compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for Magma Interaction in the Genesis of High-K Calc-Alkaline Granitoids in a Post-Collision Extensional Setting. Lithos, 2007, 98: 67-96.

[60]

Kretz R. Symbols for Rock Forming Minerals. American Mineralogist, 1983, 68: 277-279.

[61]

Kumar S., Rino V., Pal A. B. Field Evidence of Magma Mixing from Microgranular Enclaves Hosted in Palaeoproterozoic Malanjk-Hand Granitoids, Central India. Gondwana Research, 2004, 7: 539-548.

[62]

Leake B. E., Woolly A. R., Arps C. E. S., . Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals Names. European Journal of Mineralogy, 1997, 9: 623-651.

[63]

Lesher C. E. Decoupling of Chemical and Isotopic Exchange during Magma Mixing. Nature, 1990, 344: 235-237.

[64]

Lopéz S., Castro A. Determination of the Fluid-Absent Solidus and Supersolidus Phase Relationships of MORB-Derived Amphibo-Lites in the Range 4-14 kbar. American Mineralogist, 2001, 86: 1396-1403.

[65]

McBirney A. R. Igneous Petrology, 2007 Boston and London: Jones and Bartlett

[66]

Mezger K., Altherr R., Okrusch M., . Genesis of Acid/Basic Rock Associations: A Case Study-The Kallithea Intrusive Complex, Samos, Greece. Contributions to Mineralogy and Petrology, 1985, 90: 353-366.

[67]

Nakamura N. Determination of REE, Ba, Mg, Na and K in Carbonaceous and Ordinary Chondrites. Acta Geochimica et Cosmochimica Acta, 1974, 38: 757-775.

[68]

Naney M. T., Swanson S. E. The Effect of Fe and Mg on Crystallization in Granitic Systems. American Mineralogist, 1980, 65: 639-653.

[69]

Nelson S. T., Montana A. Sieve-Textured Plagioclase in Volcanic Rocks Produced by Rapid Decompression. American Mineralogist, 1992, 77: 1242-1249.

[70]

Nittmann J., Daccord G., Stanley H. E. Fractal Growth of Viscous Fingers: Quantitative Characterization of a Fluid Instability Phenomenon. Nature, 1985, 314: 141-145.

[71]

Nixon G. T., Pearce T. H. Laser-Interferometry Study of Oscillatory Zoning in Plagioclase: The Record of Magma Mixing and Phenocryst Recycling in Calc-Alkaline Magma Chambers, Iztaccihuat Volcano, Mexico. American Mineralogist, 1987, 72: 1144-1162.

[72]

Omrani J., Agard P., Whitechurch H., . Arc-Magmatism and Subduction History beneath the Zagros Mountains, Iran: A New Report of Adakites and Geodynamic Consequences. Lithos, 2008, 106: 380-98.

[73]

Pabst A. Observation on Inclusion in the Granitic Rocks of the Sierra Nevada. University of California Publication, (Science Bulletin), 1928, 67: 325-386.

[74]

Paterson S. R., Pignotta G. S., Vernon R. H. The Significance of Microgranitoid Enclave Shapes and Orientations. Journal of Structural Geology, 2006, 26: 1465-1481.

[75]

Pearce T. H., Kolisnik A. M. Observations of Plagioclase Zoning Using Interference Imaging. Earth-Science Reviews, 1990, 29: 9-26.

[76]

Perugini D., Poli G. Chaotic Dynamics and Fractals in Magmatic Interaction Processes: A Different Approach to the Interpretation of Mafic Microgranular Enclaves. Earth and Planetary Science Letters, 2000, 175: 93-103.

[77]

Perugini D., Poli G., Christofides G., . Magma Mixing in the Sithonia Plutonic Complex, Greece: Evidence from Mafic Microgranular Enclaves. Mineralogy and Petrology, 2003, 78: 173-200.

[78]

Perugini D., Ventura G., Petrelli M., . Kinematic Significance of Mmorphological Structures Generated by Mixing of Magmas: A Case Study from Salina Island (southern Italy). Earth and Planetary Science Letters, 2004, 222: 1051-1066.

[79]

Petford N., Gallagher K. Partial Melting of Mafic (Amphibolitic) Lower Crust by Periodic Influx of Basaltic Magma. Earth and Planetary Science Letters, 2001, 193: 483-499.

[80]

Phillips G. N., Wall V. J., Clemens J. D. Petrology of the Strathbogie Batholith: A Cordierite-Bearing Granite. Canadian Mineralogist, 1981, 19: 47-63.

[81]

Pin C., Binon M., Belin J. M., . Origin of Microgranular Enclaves in Granitoids: Equivocal Sr-Nd Evidence from Hercynian Rocks in the Massif Central (France). Journal of Geophysical Research, 1990, 95: 17821-17828.

[82]

Poli G. E., Tommasini S. Model for the Origin and Significance of Microgranular Enclaves in Calc-Alkaline Gran-Itoids. Journal of Petrology, 1991, 32: 657-666.

[83]

Rapp R. P., Watson E. B. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 1995, 36: 891-931.

[84]

Rapp R. P., Watson E. B., Miller C. F. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalities. Precambrian Research, 1991, 51: 1-25.

[85]

Reid J. B. Jr., Evans O. C., Fates D. G. Magma Mixing in Granitic Rocks of the Central Sierra Nevada, California. Earth and Planetary Science Letters, 1983, 66: 243-261.

[86]

Ricou L. E., Braud J., Brunn J. H. Le Zagros. In: Livre à la Mémoire de A. F. de Lapparent (1905-1975). Mémoire hors Série de la Société Géologique de France, 1977, 8: 33-52.

[87]

Ridolfi F., Renzulli A., Puerini M. Stability and Chemical Equilibrium of Amphibole in Calc-Alkaline Magmas: An Overview, New Thermobarometric Formulations and Application to Subduction-Related volcanoes. Contributions to Mineralogy and Petrology, 2010, 160: 45-66.

[88]

Rollinson H. R. Using Geochemical Data: Evaluation, Presentation. Interpretation, 1993 London: Longman Scientific and Technical, 352.

[89]

Rottura A., Bargossi G. M., Caggianelli A., . Origin and Significance of the Permian High-K Calc-Alkaline Magmatism in the Central-Eastern Southern Alps, Italy. Lithos, 1998, 45: 329-348.

[90]

Rudnick R. L. Fountain D. M., Arculus R., Kay R. W. Xenoliths—Eamples of the Lower Crust. Continental Lower Crust, 1992 Amsterdam: Elsevier, 269-316.

[91]

Rudnick R. L., Goldstein S. L. The Pb Isotopic Compositions of Lower Crustal Xenoliths and the Evolution of Lower Crustal Pb. Earth and Planetary Science Letters, 1990, 98: 192-207.

[92]

Rushmer T. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid Absent Conditions. Contributions to Mineralogy and Petrology, 1991, 107: 41-59.

[93]

Russell J. K. Magma Mixing Processes: Insights and Constraints from Thermodynamic Calculations. Reviews in Mineralogy, 1990, 24: 151-190.

[94]

Schmidt M. W. Amphibole Composition in Tonalite as a Function of Pressure an Experimental Calibration of the Al-Hornblende Barometer. Contributions to Mineralogy and Petrology, 1992, 110: 304-310.

[95]

Singer B. S. Plagioclase Zoning in Mid-Pleistocene Lavas from the Seguam Volcanic Center, Central Aleutian Arc, Alaska. American Mineralogist, 1993, 78: 143-157.

[96]

Sinha K. K. N.-K., Sharma P. K., Gupta R. K. Petrochemical Evidences of Magma Mingling and Mixing in Bundelk-Hand Massif, Rajghat, Uttar Pradesh, Gondwana. Geological Magazine, 2001, 13: 1-11.

[97]

Snelling A. A., Woodmorappe J. The Cooling of Thick Igneous Bodies on a Young Earth. In: 4th International Conference on Creationism, Pittsburgh, Pennsylvania, 1998, 527-545.

[98]

Sparks R. S. J., Marshall L. A. Thermal and Mechanical Constraints on Mixing between Mafic and Silicic Magmas. Journal of Volcanology and Geothermal Research, 1986, 29: 99-124.

[99]

Stamatelopoulou-Seymour K., Vlassopoulos D., Pearce T. H., . The Record of Magma Chamber Processes in Plagioclase Phenocrysts at Thera Volcano, Aegean Volcanic Arc, Greece. Contributions to Mineralogy and Petrology, 1990, 104: 73-84.

[100]

Stephens W. E., Holden P., Henney J. Didier J., Barbarin B. Microdi-Oritic Enclaves within the Scottish Caledonian Granitoids and their Significance for Crustal Magmatism. Enclaves and Granite Petrology. Developments in Petrology, 13, 1991 Amsterdam: Elsevier, 125-134.

[101]

Streckeisen A. To Each Plutonic Rocks its Proper Name. Earth-Science Reviews, 1976, 12: 1-33.

[102]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Socierty of London Special Publication, 1989, 42: 313-345.

[103]

Sylvester A. G. The Nature and Polygenetic Origin of Orbicular Granodiorite in the Lower Castle CreekPuton, Northern Sierra Nevada Batholith, California. Geosphere, 2011, 7: 1134-1142.

[104]

III Tepley F. J., Davidson J. P., Clynne M. A. Magmatic Interactions as Recorded in Plagioclase Phenocrysts of Chaos Crags, Lassen Volcanic Center, California. Journal of Petrology, 1999, 40(5): 787-806.

[105]

Tobisch O. T., McNulty B. A., Vernon R. H. Microgranitoid Enclave Swarms in Granitic Plutons, Central Sierra Nevada, California. Lithos, 1997, 40: 321-339.

[106]

Tsuchiyama A. Dissolution Kinetics of Plagioclase in the Melt of the System Diopside-Albite-Anorthite, and the Origin of Dusty Plagioclase in Andesites. Contributions to Mineralogy and Petrology, 1985, 89: 1-16.

[107]

van de Flierdt T., Hoernes S., Jung S., . Lower Crustal Melting and the Role of Open-System Processes in the Genesis of Syn-Orogenic Quartz Diorite-Granite-Leucogranite Associations: Constraints from Sr-Nd-O Isotopes from the Bandombaai Complex, Namibia. Lithos, 2003, 67: 205-226.

[108]

van der Laan S. R., Wyllie P. J. Experimental Interaction of Granitic and Basaltic Magmas and Implications for Mafic Enclaves. Journal of Petrology, 1993, 34: 491-517.

[109]

Vernon R. H. Restite, Xenoliths and Microgranitoid Enclave in Granites. Journal and Proceedings of the Royal Society of New South Wales, 1983, 116: 77-103.

[110]

Vernon R. H. Microgranitoid Enclaves: Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 1984, 304: 438-439.

[111]

Vernon R. H. Crystallization and Hybridism in Microgranitoid Enclave Magmas: Microstructural Evidence. Journal of Geophysical Research, 1990, 95: 17849-17859.

[112]

Vernon R. H. Didier J., Barbarin B. Interpretation of Microstructures of Micro-Granitoid Enclaves. Enclaves and Granite Petrology, 1991 Amsterdam: Elsevier, 277-291.

[113]

Vernon R. H., Etheridge M. A., Wall V. J. Shape and Microstructure of Microgranitoid Enclaves: Indicators of Magmatic Mingling and Flow. Lithos, 1988, 22: 1-12.

[114]

von Quadt A., Gunther D., Frischknecht R., . Minor and Trace Element Determinations in Li2B4O7 Fused USGS Standard Materials Calibrated without Matrix-Matched Standards Using Laser Ablation ICPMS. Journal of Conference Abstracts, 1999, 4 819.

[115]

Waight T. E., Mass R., Nicholls I. A. Fingerprinting Feldspar Phenocrysts Using Crystal Isotopic Composition Stratigraphy, Implications for Crystal and Magma Mingling in S-Type Granites. Contributions to Mineralogy and Petrology, 2000, 139: 227-239.

[116]

White A. J. R., Chappell B. W. Ultrametamorphism and Granitoid Genesis. Tectonophysics, 1977, 43: 7-22.

[117]

White A. J. R., Chappell B. W., Wyborn D. Application of the Restite Model to the Deddick Granodiorite and its Enclaves—A Reinterpretation of the Observations and Data. Journal of Petrology, 1999, 40: 413-421.

[118]

Wiebe R. A. Didier J., Barbarin B. Commingling of Contrasted Magmas and Generation of Mafic Enclaves in Granitic Rocks. Enclaves and Granite Petrology. Developments of Petrology, 13, 1991 Amsterdam: Elsevier, 393-402.

[119]

Wiebe R. A. Mafic-Silicic Layered Intrusions: The Role of Basaltic Injections on Magmatic Processes and the Evolution of Silicic Magma Chambers. Transactions of the Royal Society Edinburg h Earth Sciences, 1996, 87: 233-242.

[120]

Winther K. T. An Experimentally Based Model for the Origin of Tonalitic and Trondhjemitic Melts. Chemical Geology, 1996, 127: 43-59.

[121]

Wolf M. B., Wyllie P. J. Dehydration-Melting of Amphibolite at 10 kbar: the Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 1994, 115: 369-383.

[122]

Wones D. R. Significance of the Assemblage Titanite+Magnetitet+Quartz in Granitic Rocks. American Mineralogist, 1989, 74: 744-749.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/